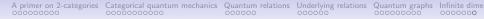
Quantum relations and zero-error communication

Dominic Verdon

Workshop on quantum graphs, Saarland University, February 2025

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@



This talk is based on:

- Verdon, D.; A covariant Stinespring theorem. J. Math. Phys. 63 (9): 091705 [Ver22]
- Verdon, D.; Covariant Quantum Combinatorics with Applications to Zero-Error Communication. Commun. Math. Phys. 405, 51 (2024). [Ver24]
- Allen, R. and Verdon, D.; ${\rm CP}^\infty$ and beyond: 2-categorical dilation theory. Th. Appl. Cat. Vol. 41, No. 50, pp 1783-1811 (2024) [AV24]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

and some new work in production now.

A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dime 00000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

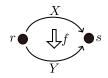
A primer on 2-categories

The diagrammatic calculus of a 2-category: I

• We will discuss C*- and W*-2-categories.

The diagrammatic calculus of a 2-category: I

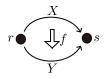
- We will discuss C*- and W*-2-categories.
- A 2-category has *objects*, morphisms between the objects (called *1-morphisms*) and morphisms between the 1-morphisms (called *2-morphisms*).



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The diagrammatic calculus of a 2-category: I

- We will discuss C*- and W*-2-categories.
- A 2-category has *objects*, morphisms between the objects (called *1-morphisms*) and morphisms between the 1-morphisms (called *2-morphisms*).

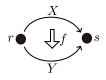


 2-categories have a convenient planar diagrammatic calculus that handles composition of these different types of morphism.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The diagrammatic calculus of a 2-category: I

- We will discuss C*- and W*-2-categories.
- A 2-category has *objects*, morphisms between the objects (called *1-morphisms*) and morphisms between the 1-morphisms (called *2-morphisms*).



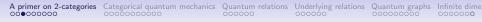
- 2-categories have a convenient planar diagrammatic calculus that handles composition of these different types of morphism.
- This generalises the 'tensor network/tensor diagram' calculus for tensor categories. A tensor category is precisely a 2-category with a single object.

A primer on 2-categories Categorical quantum mechanics Quantum relations 000000 Quantum graphs Infinite dime

The diagrammatic calculus of a 2-category: II

• We represent objects *r*, *s*, ... as planar regions:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●



The diagrammatic calculus of a 2-category: II

• We represent objects *r*, *s*, ... as planar regions:

 1-morphisms X : r → s are wires separating the r-region on the left from the s-region on the right:

$$r$$
 s X

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

The identity 1-morphism $\mathbb{1}_r : r \to r$ is invisible.

The diagrammatic calculus of a 2-category: II

• We represent objects r, s, \ldots as planar regions:

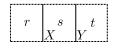
 1-morphisms X : r → s are wires separating the r-region on the left from the s-region on the right:

$$r$$
 s X

 $X \otimes Y : r \to t$

The identity 1-morphism $\mathbb{1}_r : r \to r$ is invisible.

• Composition of 1-morphisms is represented by horizontal juxtaposition, read from left to right:



A primer on 2-categories Categorical quantum mechanics Quantum relations 000000 Quantum graphs Infinite dime

The diagrammatic calculus of a 2-category: III

 2-morphisms f : X → Y are represented by boxes connecting X below to Y above. (Identity 2-morphisms are invisible.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A primer on 2-categories Categorical quantum mechanics Quantum relations 000000 Quantum relations Quantum graphs Infinite dime

The diagrammatic calculus of a 2-category: III

 2-morphisms f : X → Y are represented by boxes connecting X below to Y above. (Identity 2-morphisms are invisible.)

• Vertical composition is read from bottom to top:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A primer on 2-categories Categorical quantum mechanics Quantum relations 000000 Quantum relations 000000 Quantum graphs Infinite dime

The diagrammatic calculus of a 2-category: III

 2-morphisms f : X → Y are represented by boxes connecting X below to Y above. (Identity 2-morphisms are invisible.)

• *Vertical* composition is read from bottom to top:

• Horizontal composition is read from left to right:

$$r \underbrace{\begin{vmatrix} Y_1 \\ f \end{vmatrix}}_{X_1} s \underbrace{\begin{vmatrix} Y_2 \\ g \end{vmatrix}}_{X_2} t \qquad f \otimes g : X_1 \otimes X_2 \to Y_1 \otimes Y_2$$

Dagger 2-categories

• A *dagger* structure on a 2-category generalises the Hermitian adjoint of linear maps between Hilbert spaces.

Dagger 2-categories

- A *dagger* structure on a 2-category generalises the Hermitian adjoint of linear maps between Hilbert spaces.
- Every 2-morphism $f : X \to Y$ has a *dagger* $f^{\dagger} : Y \to X$ satisfying:

$$(f^{\dagger})^{\dagger}=f \qquad (g\circ f)^{\dagger}=f^{\dagger}\circ g^{\dagger} \qquad (f\otimes g)^{\dagger}=f^{\dagger}\otimes g^{\dagger}$$

A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dime

000000000

- A *dagger* structure on a 2-category generalises the Hermitian adjoint of linear maps between Hilbert spaces.
- Every 2-morphism $f : X \to Y$ has a *dagger* $f^{\dagger} : Y \to X$ satisfying:

$$(f^{\dagger})^{\dagger}=f \qquad (g\circ f)^{\dagger}=f^{\dagger}\circ g^{\dagger} \qquad (f\otimes g)^{\dagger}=f^{\dagger}\otimes g^{\dagger}$$

• The dagger is represented diagrammatically by flipping the diagram in a horizontal axis:

$$\left(r \begin{array}{c|c} & Y \\ \hline f \\ \hline g \\ \hline X \end{array}\right)^{\dagger} = r \begin{array}{c|c} X \\ \hline f \\ \hline Y \\ \hline Y \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dime

- A *dagger* structure on a 2-category generalises the Hermitian adjoint of linear maps between Hilbert spaces.
- Every 2-morphism $f : X \to Y$ has a *dagger* $f^{\dagger} : Y \to X$ satisfying:

$$(f^{\dagger})^{\dagger}=f \qquad (g\circ f)^{\dagger}=f^{\dagger}\circ g^{\dagger} \qquad (f\otimes g)^{\dagger}=f^{\dagger}\otimes g^{\dagger}$$

• The dagger is represented diagrammatically by flipping the diagram in a horizontal axis:

$$\left(r \begin{array}{c} |Y \\ f \\ x \end{array}\right)^{\dagger} = r \begin{array}{c} |X \\ f \\ y \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• A 2-morphism $f: X \to Y$ is

A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dime

- A *dagger* structure on a 2-category generalises the Hermitian adjoint of linear maps between Hilbert spaces.
- Every 2-morphism $f : X \to Y$ has a *dagger* $f^{\dagger} : Y \to X$ satisfying:

$$(f^{\dagger})^{\dagger}=f \qquad (g\circ f)^{\dagger}=f^{\dagger}\circ g^{\dagger} \qquad (f\otimes g)^{\dagger}=f^{\dagger}\otimes g^{\dagger}$$

• The dagger is represented diagrammatically by flipping the diagram in a horizontal axis:

$$\left(r \begin{array}{c|c} Y \\ f \\ \hline f \\ X \end{array}\right)^{\dagger} = r \begin{array}{c|c} X \\ f \\ \hline f \\ Y \end{array} s$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• A 2-morphism $f: X \to Y$ is

000000000

• an *isometry* if $f^{\dagger} \circ f = id_X$, and

A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dime

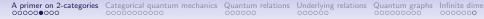
- A *dagger* structure on a 2-category generalises the Hermitian adjoint of linear maps between Hilbert spaces.
- Every 2-morphism $f : X \to Y$ has a *dagger* $f^{\dagger} : Y \to X$ satisfying:

$$(f^\dagger)^\dagger = f \qquad (g\circ f)^\dagger = f^\dagger\circ g^\dagger \qquad (f\otimes g)^\dagger = f^\dagger\otimes g^\dagger$$

• The dagger is represented diagrammatically by flipping the diagram in a horizontal axis:

$$\left(r \begin{array}{c|c} Y \\ f \\ \hline f \\ X \end{array}\right)^{\dagger} = r \begin{array}{c|c} X \\ f \\ \hline f \\ Y \end{array} s$$

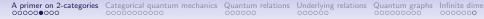
- A 2-morphism $f: X \to Y$ is
 - an *isometry* if $f^{\dagger} \circ f = id_X$, and
 - a *unitary* if additionally $f \circ f^{\dagger} = id_Y$.



C^* - and W^* -2-categories

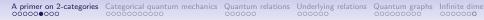
• We say that a dagger 2-category is a *C**-*2-category* if it has some extra structure. In particular:

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ



C^* - and W^* -2-categories

- We say that a dagger 2-category is a *C**-*2*-category if it has some extra structure. In particular:
 - The 2-morphism sets Hom(X, Y) are complex vector spaces (in fact, Banach spaces).



C^* - and W^* -2-categories

- We say that a dagger 2-category is a *C**-*2*-category if it has some extra structure. In particular:
 - The 2-morphism sets Hom(X, Y) are complex vector spaces (in fact, Banach spaces).

• Composition (resp. dagger) is linear (resp. antilinear).

C^* - and W^* -2-categories

- We say that a dagger 2-category is a *C**-*2*-category if it has some extra structure. In particular:
 - The 2-morphism sets Hom(X, Y) are complex vector spaces (in fact, Banach spaces).
 - Composition (resp. dagger) is linear (resp. antilinear).
 - The space End(X) is a unital C*-algebra (product=composition, involution=dagger):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

C^* - and W^* -2-categories

- We say that a dagger 2-category is a *C**-*2*-category if it has some extra structure. In particular:
 - The 2-morphism sets Hom(X, Y) are complex vector spaces (in fact, Banach spaces).
 - Composition (resp. dagger) is linear (resp. antilinear).
 - The space End(X) is a unital C*-algebra (product=composition, involution=dagger):

• For any $f: X \to Y$, $f^{\dagger} \circ f$ is a positive element of End(X).

A primer on 2-categories Categorical quantum mechanics Quantum relations 000000 Quantum relations 000000 Quantum graphs Infinite dime

C^* - and W^* -2-categories

- We say that a dagger 2-category is a *C**-*2*-category if it has some extra structure. In particular:
 - The 2-morphism sets Hom(X, Y) are complex vector spaces (in fact, Banach spaces).
 - Composition (resp. dagger) is linear (resp. antilinear).
 - The space End(X) is a unital C*-algebra (product=composition, involution=dagger):

- For any $f: X \to Y$, $f^{\dagger} \circ f$ is a positive element of $\operatorname{End}(X)$.
- A C*-2-category is a W*-2-category if additionally every 2-morphism space Hom(X, Y) has a predual. In particular, the endomorphism algebras End(X) are W*-algebras.

・ロト ・ 語 ト ・ 語 ト ・ 語 ・ ・ 日 ・

A primer on 2-categories Categorical quantum mechanics Quantum relations 000000 Quantum graphs Infinite dime

Rigidity

 In a *rigid C**- or W*-2-category, every 1-morphism X : r → s has a *dual* 1-morphism X* : s → r:

$$r \downarrow_X^s \qquad s \downarrow_X^r$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Rigidity

A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dime

0000000000

 In a rigid C*- or W*-2-category, every 1-morphism X : r → s has a dual 1-morphism X* : s → r:

$$r \downarrow_X^s \qquad s \downarrow_X^r$$

• There are *cup* and *cap* 2-morphisms $\eta_X : \mathbb{1}_s \to X^* \otimes X$ and $\epsilon_X : X \otimes X^* \to \mathbb{1}_r$:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Rigidity

A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dime

 In a *rigid* C*- or W*-2-category, every 1-morphism X : r → s has a *dual* 1-morphism X* : s → r:

$$r \downarrow_X^s \qquad s \downarrow_X^r$$

• There are *cup* and *cap* 2-morphisms $\eta_X : \mathbb{1}_s \to X^* \otimes X$ and $\epsilon_X : X \otimes X^* \to \mathbb{1}_r$:

• These satisfy the *snake* or *zigzag* equations:

$$\begin{array}{c}
r \\
\uparrow X \\
\downarrow S \\$$

A primer on 2-categories Categorical quantum mechanics Quantum relations 0000000000 Quantum graphs Infinite dime

Conjugate and transpose

 Note that the dagger does not reverse the direction of the arrows indicating duality:

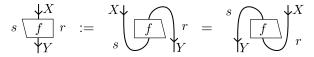
$$\left(\underbrace{\overset{*}{}}_{s} X\right)^{\dagger} = \underbrace{\overset{*}{}}_{r} X \qquad \qquad \left(\underbrace{\overset{*}{}}_{r} X\right)^{\dagger} = \underbrace{\overset{*}{}}_{r} X$$

A primer on 2-categories Categorical quantum mechanics Quantum relations 0000000000 Quantum graphs Infinite dime

Conjugate and transpose

 Note that the dagger does not reverse the direction of the arrows indicating duality:

We define the *transpose* and *conjugate* of a 2-morphism
 f : *X* → *Y*:



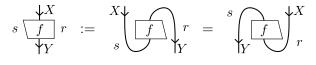
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

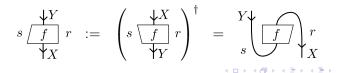
A primer on 2-categories Categorical quantum mechanics Quantum relations 0000000000 Quantum graphs Infinite dime

Conjugate and transpose

 Note that the dagger does not reverse the direction of the arrows indicating duality:

We define the *transpose* and *conjugate* of a 2-morphism
 f : *X* → *Y*:





ж

Sliding equations

We can slide the 2-morphisms around cups and caps:

$$\begin{array}{c} \widehat{\Phi} \\ \widehat$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dime

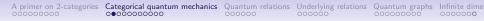
Categorical quantum mechanics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



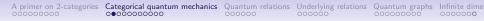
Rigid W^* -tensor categories

• A rigid W^* -tensor category \mathcal{T} encodes symmetry.



Rigid W^* -tensor categories

- A rigid W^* -tensor category \mathcal{T} encodes symmetry.
- A W^* -tensor category is a W^* -2-category with a single object.

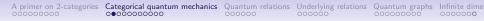


Rigid W^* -tensor categories

- A rigid W^* -tensor category \mathcal{T} encodes symmetry.
- A W^* -tensor category is a W^* -2-category with a single object.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

• Conventionally we ignore the single object:



Rigid W^* -tensor categories

- A rigid W^* -tensor category \mathcal{T} encodes symmetry.
- A W^* -tensor category is a W^* -2-category with a single object.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

- Conventionally we ignore the single object:
 - 1-morphisms = objects



Rigid W^* -tensor categories

- A rigid W^* -tensor category \mathcal{T} encodes symmetry.
- A W^* -tensor category is a W^* -2-category with a single object.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

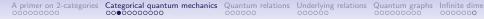
- Conventionally we ignore the single object:
 - 1-morphisms = objects
 - 1-morphism composition = 'tensor product'.

Rigid W^* -tensor categories

- A rigid W^* -tensor category \mathcal{T} encodes symmetry.
- A W^* -tensor category is a W^* -2-category with a single object.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Conventionally we ignore the single object:
 - 1-morphisms = objects
 - 1-morphism composition = 'tensor product'.
- Motivating example: the category Rep_{fd}(G) of finite-dimensional unitary representations of a compact quantum group G.



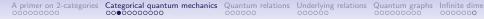
 The Hom-categories Hom(r, s) in a W*-2-category are W*-categories.

- The Hom-categories Hom(r, s) in a W*-2-category are W*-categories.
- An object X in a W^* -category is called *simple* if $End(X) \cong \mathbb{C}$.

- The Hom-categories Hom(r, s) in a W*-2-category are W*-categories.
- An object X in a W^* -category is called *simple* if $End(X) \cong \mathbb{C}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• A W*-category is semisimple if:



- The Hom-categories Hom(r, s) in a W*-2-category are W*-categories.
- An object X in a W^* -category is called *simple* if $\operatorname{End}(X) \cong \mathbb{C}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- A W*-category is *semisimple* if:
 - It has a direct sum (a.k.a. dagger biproduct).

Semisimplicity

- The Hom-categories Hom(r, s) in a W*-2-category are W*-categories.
- An object X in a W^* -category is called *simple* if $\operatorname{End}(X) \cong \mathbb{C}$.
- A W*-category is *semisimple* if:
 - It has a direct sum (a.k.a. dagger biproduct).
 - Every object is unitarily isomorphic to a finite direct sum of simple objects {X_i}_{i∈I}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Semisimplicity

- The Hom-categories Hom(r, s) in a W*-2-category are W*-categories.
- An object X in a W^* -category is called *simple* if $End(X) \cong \mathbb{C}$.
- A W*-category is semisimple if:
 - It has a direct sum (a.k.a. dagger biproduct).
 - Every object is unitarily isomorphic to a finite direct sum of simple objects {X_i}_{i∈1}.

• We write

$$X \cong \bigoplus_{i \in I} d_i \cdot X_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where d_i is the *multiplicity* of the simple object X_i in the direct sum.

Semisimplicity

- The Hom-categories Hom(r, s) in a W*-2-category are W*-categories.
- An object X in a W^* -category is called *simple* if $\operatorname{End}(X) \cong \mathbb{C}$.
- A W*-category is semisimple if:
 - It has a direct sum (a.k.a. dagger biproduct).
 - Every object is unitarily isomorphic to a finite direct sum of simple objects {X_i}_{i∈1}.

• We write

$$X \cong \bigoplus_{i \in I} d_i \cdot X_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where d_i is the *multiplicity* of the simple object X_i in the direct sum.

• Example: rigid W*-tensor categories.

Q-system completion

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

 Rigid W*-tensor category T → rigid W*-2-category Mod_{fd}(T), defined as follows:

Q-system completion

- Rigid W^* -tensor category $\mathcal{T} \to \text{rigid } W^*$ -2-category $\operatorname{Mod}_{fd}(\mathcal{T})$, defined as follows:
 - Objects: 'Finite-dimensional' left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$:

$$\overline{\otimes}:\mathcal{T}\times\mathcal{M}\to\mathcal{M}$$

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Q-system completion

- Rigid W^* -tensor category $\mathcal{T} \to \text{rigid } W^*$ -2-category $\operatorname{Mod}_{fd}(\mathcal{T})$, defined as follows:
 - Objects: 'Finite-dimensional' left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$:

$$\overline{\otimes}:\mathcal{T}\times\mathcal{M}\to\mathcal{M}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N} : \mathcal{T}$ -module functors.

Q-system completion

- Rigid W^* -tensor category $\mathcal{T} \to \text{rigid } W^*$ -2-category $\operatorname{Mod}_{fd}(\mathcal{T})$, defined as follows:
 - Objects: 'Finite-dimensional' left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$:

$$\overline{\otimes}:\mathcal{T}\times\mathcal{M}\to\mathcal{M}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N} : \mathcal{T}$ -module functors.
- 2-morphisms $f, g, \dots : X \to Y$: natural transformations of \mathcal{T} -module functors.

A primer on 2-categories Categorical quantum mechanics Quantum relations 00000000 Quantum relations 0000000 Quantum graphs Infinite dime

Q-system completion

- Rigid W^* -tensor category $\mathcal{T} \to \text{rigid } W^*$ -2-category $\operatorname{Mod}_{fd}(\mathcal{T})$, defined as follows:
 - Objects: 'Finite-dimensional' left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$:

$$\overline{\otimes}:\mathcal{T}\times\mathcal{M}\to\mathcal{M}$$

- 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N} : \mathcal{T}$ -module functors.
- 2-morphisms $f, g, \dots : X \to Y$: natural transformations of \mathcal{T} -module functors.
- If *T* ≃ Rep_{fd}(*G*) for CQG *G* then Mod(*T*) is the finite-dimensional equivariant Morita 2-category:

A primer on 2-categories Categorical quantum mechanics Quantum relations 00000000 Quantum relations 0000000 Quantum graphs Infinite dime

Q-system completion

- Rigid W^* -tensor category $\mathcal{T} \to \text{rigid } W^*$ -2-category $\operatorname{Mod}_{fd}(\mathcal{T})$, defined as follows:
 - Objects: 'Finite-dimensional' left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$:

$$\overline{\otimes}:\mathcal{T}\times\mathcal{M}\to\mathcal{M}$$

- 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N} : \mathcal{T}$ -module functors.
- 2-morphisms $f, g, \dots : X \to Y$: natural transformations of \mathcal{T} -module functors.
- If *T* ≃ Rep_{fd}(*G*) for CQG *G* then Mod(*T*) is the finite-dimensional equivariant Morita 2-category:
 - Objects: f.d. *G*-*W**-algebras.

A primer on 2-categories Categorical quantum mechanics Quantum relations 00000000 Quantum relations 0000000 Quantum graphs Infinite dime

Q-system completion

- Rigid W^* -tensor category $\mathcal{T} \to \text{rigid } W^*$ -2-category $\operatorname{Mod}_{fd}(\mathcal{T})$, defined as follows:
 - Objects: 'Finite-dimensional' left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$:

$$\overline{\otimes}:\mathcal{T}\times\mathcal{M}\to\mathcal{M}$$

- 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N} : \mathcal{T}$ -module functors.
- 2-morphisms $f, g, \dots : X \to Y$: natural transformations of \mathcal{T} -module functors.
- If *T* ≃ Rep_{fd}(*G*) for CQG *G* then Mod(*T*) is the finite-dimensional equivariant Morita 2-category:
 - Objects: f.d. *G*-*W**-algebras.
 - 1-morphisms: *G*-equivariant bimodules.

Q-system completion

- Rigid W^* -tensor category $\mathcal{T} \to \text{rigid } W^*$ -2-category $\operatorname{Mod}_{fd}(\mathcal{T})$, defined as follows:
 - Objects: 'Finite-dimensional' left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$:

$$\overline{\otimes}:\mathcal{T}\times\mathcal{M}\to\mathcal{M}$$

- 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N} : \mathcal{T}$ -module functors.
- 2-morphisms $f, g, \dots : X \to Y$: natural transformations of \mathcal{T} -module functors.
- If *T* ≃ Rep_{fd}(*G*) for CQG *G* then Mod(*T*) is the finite-dimensional equivariant Morita 2-category:
 - Objects: f.d. *G*-*W**-algebras.
 - 1-morphisms: *G*-equivariant bimodules.
 - 2-morphisms: *G*-equivariant bimodule maps.

Q-system completion

- Rigid W^* -tensor category $\mathcal{T} \to \text{rigid } W^*$ -2-category $\operatorname{Mod}_{fd}(\mathcal{T})$, defined as follows:
 - Objects: 'Finite-dimensional' left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$:

$$\overline{\otimes}:\mathcal{T}\times\mathcal{M}\to\mathcal{M}$$

- 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N} : \mathcal{T}$ -module functors.
- 2-morphisms $f, g, \dots : X \to Y$: natural transformations of \mathcal{T} -module functors.
- If *T* ≃ Rep_{fd}(*G*) for CQG *G* then Mod(*T*) is the finite-dimensional equivariant Morita 2-category:
 - Objects: f.d. *G*-*W**-algebras.
 - 1-morphisms: *G*-equivariant bimodules.
 - 2-morphisms: *G*-equivariant bimodule maps.
- This completion can also be defined in terms of *Q*-systems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Q-system completion

- Rigid W^* -tensor category $\mathcal{T} \to \text{rigid } W^*$ -2-category $\operatorname{Mod}_{fd}(\mathcal{T})$, defined as follows:
 - Objects: 'Finite-dimensional' left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$:

$$\overline{\otimes}:\mathcal{T}\times\mathcal{M}\to\mathcal{M}$$

- 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N} : \mathcal{T}$ -module functors.
- 2-morphisms $f, g, \dots : X \to Y$: natural transformations of \mathcal{T} -module functors.
- If *T* ≃ Rep_{fd}(*G*) for CQG *G* then Mod(*T*) is the finite-dimensional equivariant Morita 2-category:
 - Objects: f.d. *G*-*W**-algebras.
 - 1-morphisms: *G*-equivariant bimodules.
 - 2-morphisms: *G*-equivariant bimodule maps.
- This completion can also be defined in terms of *Q*-systems.

• See [DR18][CHPJP22][Ver22].

Yoneda embedding of \mathcal{T} in $\operatorname{Mod}_{fd}(\mathcal{T})$

 The rigid W*-tensor category T is a module category over itself, where T acts by tensor on the left.

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Yoneda embedding of \mathcal{T} in $Mod_{fd}(\mathcal{T})$

- The rigid *W**-tensor category *T* is a module category over itself, where *T* acts by tensor on the left.
- Acting by tensor on the right yields a tensor equivalence

 $\operatorname{End}_{\mathcal{T}}(\mathcal{T})\simeq \mathcal{T}$

so \mathcal{T} lives in $Mod(\mathcal{T})$ as the category of 1-morphisms $\mathcal{T} \to \mathcal{T}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Yoneda embedding of \mathcal{T} in $Mod_{fd}(\mathcal{T})$

- The rigid W*-tensor category T is a module category over itself, where T acts by tensor on the left.
- Acting by tensor on the right yields a tensor equivalence

$$\operatorname{End}_{\mathcal{T}}(\mathcal{T})\simeq \mathcal{T}$$

so \mathcal{T} lives in $\operatorname{Mod}(\mathcal{T})$ as the category of 1-morphisms $\mathcal{T} \to \mathcal{T}$.

• There is an equivalence of module categories

$$\mathcal{M}\simeq \operatorname{Hom}_{\mathcal{T}}(\mathcal{T},\mathcal{M})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

so \mathcal{M} lives in $\operatorname{Mod}(\mathcal{T})$ as the category of 1-morphisms $\mathcal{T} \to \mathcal{M}.$

Yoneda embedding of \mathcal{T} in $Mod_{fd}(\mathcal{T})$

- The rigid W*-tensor category T is a module category over itself, where T acts by tensor on the left.
- Acting by tensor on the right yields a tensor equivalence

$$\operatorname{End}_{\mathcal{T}}(\mathcal{T})\simeq \mathcal{T}$$

so \mathcal{T} lives in $\operatorname{Mod}(\mathcal{T})$ as the category of 1-morphisms $\mathcal{T} \to \mathcal{T}$.

• There is an equivalence of module categories

$$\mathcal{M} \simeq \operatorname{Hom}_{\mathcal{T}}(\mathcal{T}, \mathcal{M})$$

so \mathcal{M} lives in $\operatorname{Mod}(\mathcal{T})$ as the category of 1-morphisms $\mathcal{T} \to \mathcal{M}.$

• The module action is by composition in $\operatorname{Mod}(\mathcal{T})$:

$$\mathcal{T} \hspace{0.1cm} \begin{array}{c} \uparrow \\ V \end{array} \hspace{0.1cm} \mathcal{T} \hspace{0.1cm} \begin{array}{c} \uparrow \\ X \end{array} \hspace{0.1cm} \mathcal{M} \end{array} \hspace{0.1cm} \cong \hspace{0.1cm} \mathcal{T} \hspace{0.1cm} \begin{array}{c} \uparrow \\ V \hspace{0.1cm} \overline{\mathbb{N}} \end{array} \hspace{0.1cm} \begin{array}{c} \downarrow \\ V \hspace{0.1cm} \overline{\mathbb{N}} \end{array} \hspace{0.1cm} \begin{array}{c} I \hspace{0.1cm} \overline{\mathbb{N}} \end{array} \hspace{0.1cm} \begin{array}{c} I \hspace{0.1cm} \overline{\mathbb{N}} \end{array} \hspace{0.1cm} \begin{array}{c} I \hspace{0} \overline{\mathbb{N}} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \begin{array}{c} I \hspace{0} \overline{\mathbb{N}} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \begin{array}{c} I \hspace{0} \overline{\mathbb{N}} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \begin{array}{c} I \hspace{0} \overline{\mathbb{N}} \end{array} \hspace{0} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \hspace{0} } \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} } \hspace{0} \end{array} \hspace{0} \hspace{0} } \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} } \hspace{0} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} } \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} } \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} \end{array} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} } \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} \hspace{0} \hspace{0} \end{array} \hspace{0} \hspace{0} \hspace{0} \hspace{0} \hspace{0} \end{array} \hspace{0$$

Definition

We say that an object X of a \mathcal{T} -module category \mathcal{M} is generating if, for every object Y of \mathcal{M} , there exists some $V \in \mathcal{T}$ and an isometry $\iota : Y \to V \overline{\otimes} X$.

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Definition

We say that an object X of a \mathcal{T} -module category \mathcal{M} is generating if, for every object Y of \mathcal{M} , there exists some $V \in \mathcal{T}$ and an isometry $\iota : Y \to V \overline{\otimes} X$.

Definition (\mathcal{T} -systems)

We call an equivalence class of objects in Mod_{fd}(*T*) (i.e. an equivalence class of *T*-module categories) a *T*-Morita class.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

We say that an object X of a \mathcal{T} -module category \mathcal{M} is generating if, for every object Y of \mathcal{M} , there exists some $V \in \mathcal{T}$ and an isometry $\iota : Y \to V \overline{\otimes} X$.

Definition (\mathcal{T} -systems)

- We call an equivalence class of objects in Mod_{fd}(*T*) (i.e. an equivalence class of *T*-module categories) a *T*-Morita class.
- Let *M* be a representative of a *T*-Morita class. We call a generating 1-morphism X : *T* → *M* a *T*-system in that Morita class.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

We say that an object X of a \mathcal{T} -module category \mathcal{M} is generating if, for every object Y of \mathcal{M} , there exists some $V \in \mathcal{T}$ and an isometry $\iota : Y \to V \overline{\otimes} X$.

Definition (\mathcal{T} -systems)

- We call an equivalence class of objects in Mod_{fd}(*T*) (i.e. an equivalence class of *T*-module categories) a *T*-Morita class.
- Let *M* be a representative of a *T*-Morita class. We call a generating 1-morphism X : *T* → *M* a *T*-system in that Morita class.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

If $\mathcal{T} \simeq \operatorname{Rep}_{fd}(G)$ then there is a bijective correspondence:

Definition

We say that an object X of a \mathcal{T} -module category \mathcal{M} is generating if, for every object Y of \mathcal{M} , there exists some $V \in \mathcal{T}$ and an isometry $\iota : Y \to V \overline{\otimes} X$.

Definition (\mathcal{T} -systems)

- We call an equivalence class of objects in Mod_{fd}(*T*) (i.e. an equivalence class of *T*-module categories) a *T*-Morita class.
- Let \mathcal{M} be a representative of a \mathcal{T} -Morita class. We call a generating 1-morphism $X : \mathcal{T} \to \mathcal{M}$ a \mathcal{T} -system in that Morita class.
- If $\mathcal{T}\simeq \operatorname{Rep}_{fd}(G)$ then there is a bijective correspondence:
 - Iso. classes of \mathcal{T} -systems \leftrightarrow Iso. classes of f.d. G- W^* -algebras

Definition

We say that an object X of a \mathcal{T} -module category \mathcal{M} is generating if, for every object Y of \mathcal{M} , there exists some $V \in \mathcal{T}$ and an isometry $\iota : Y \to V \overline{\otimes} X$.

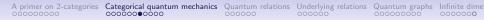
Definition (\mathcal{T} -systems)

- We call an equivalence class of objects in Mod_{fd}(*T*) (i.e. an equivalence class of *T*-module categories) a *T*-Morita class.
- Let *M* be a representative of a *T*-Morita class. We call a generating 1-morphism X : *T* → *M* a *T*-system in that Morita class.
- If $\mathcal{T}\simeq \operatorname{Rep}_{fd}(G)$ then there is a bijective correspondence:
 - Iso. classes of \mathcal{T} -systems \leftrightarrow Iso. classes of f.d. G- W^* -algebras
 - \mathcal{T} -Morita classes \leftrightarrow equivariant Morita classes of f.d. $G-W^*$ -algebras

Algebra of observables

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

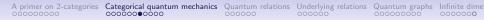
• Let $X : \mathcal{T} \to \mathcal{M}$ be a \mathcal{T} -system.



Algebra of observables

- Let $X : \mathcal{T} \to \mathcal{M}$ be a \mathcal{T} -system.
- We call the W*-algebra End(X) the algebra of observables on the *T*-system X:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

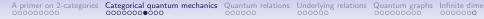


Algebra of observables

- Let $X : \mathcal{T} \to \mathcal{M}$ be a \mathcal{T} -system.
- We call the W*-algebra End(X) the algebra of observables on the *T*-system X:

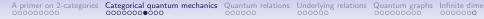
 If *T* ≅ Rep_{fd}(*G*), then End(*X*) is the fixed point subalgebra of the associated f.d. *G*-*W**-algebra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



\mathcal{T} -dynamics: I

Definition (C.f [CH16]) Let $X : T \to M_1$ and $Y : T \to M_2$ be T-systems. A dilation $X \to Y$ is a pair of:



\mathcal{T} -dynamics: I

Definition (C.f [CH16])

Let $X : \mathcal{T} \to \mathcal{M}_1$ and $Y : \mathcal{T} \to \mathcal{M}_2$ be \mathcal{T} -systems. A *dilation* $X \to Y$ is a pair of:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• a 1-morphism $E: \mathcal{M}_1 \to \mathcal{M}_2$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

\mathcal{T} -dynamics: I

Definition (C.f [CH16])

Let $X : \mathcal{T} \to \mathcal{M}_1$ and $Y : \mathcal{T} \to \mathcal{M}_2$ be \mathcal{T} -systems. A *dilation* $X \to Y$ is a pair of:

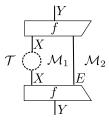
- a 1-morphism $E: \mathcal{M}_1 \to \mathcal{M}_2$
- and a 2-morphism $f: Y \to X \otimes E$.

Definition (C.f [CH16])

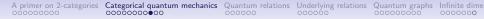
Let $X : \mathcal{T} \to \mathcal{M}_1$ and $Y : \mathcal{T} \to \mathcal{M}_2$ be \mathcal{T} -systems. A *dilation* $X \to Y$ is a pair of:

- a 1-morphism $E: \mathcal{M}_1 \to \mathcal{M}_2$
- and a 2-morphism $f: Y \to X \otimes E$.

A dilation $X \to Y$ induces the following map $\operatorname{End}(X) \to \operatorname{End}(Y)$ on observables:



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Definition (Cont.)

• A 2-morphism $\sigma : E_1 \to E_2$ is a *partial isometry* if $\sigma^{\dagger} \circ \sigma \in \text{End}(E_1)$ is a projection.

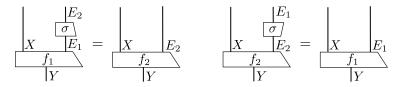
Definition (Cont.)

- A 2-morphism $\sigma : E_1 \to E_2$ is a *partial isometry* if $\sigma^{\dagger} \circ \sigma \in \operatorname{End}(E_1)$ is a projection.
- Dilations (E₁, f₁), (E₂, f₂) : X → Y are equivalent if there exists a partial isometry σ : E₁ → E₂ such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition (Cont.)

- A 2-morphism $\sigma: E_1 \to E_2$ is a *partial isometry* if $\sigma^{\dagger} \circ \sigma \in \operatorname{End}(E_1)$ is a projection.
- Dilations (E₁, f₁), (E₂, f₂) : X → Y are equivalent if there exists a partial isometry σ : E₁ → E₂ such that:

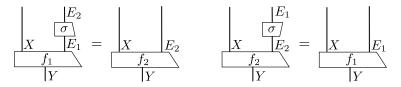


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 We call a class of dilations X → Y under this equivalence relation a CP map.

Definition (Cont.)

- A 2-morphism $\sigma: E_1 \to E_2$ is a *partial isometry* if $\sigma^{\dagger} \circ \sigma \in \operatorname{End}(E_1)$ is a projection.
- Dilations (E₁, f₁), (E₂, f₂) : X → Y are equivalent if there exists a partial isometry σ : E₁ → E₂ such that:



- We call a class of dilations X → Y under this equivalence relation a CP map.
- Every CP map has a *minimal dilation* which is related to all other dilations by an isometry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

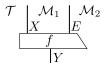
\mathcal{T} -dynamics: II

• Let $\Phi: X \to Y$ be a CP map with minimal dilation (E, f):

$$\begin{array}{c|c} \mathcal{T} & \mathcal{M}_1 & \mathcal{M}_2 \\ X & E \\ \hline & f \\ Y \end{array}$$

\mathcal{T} -dynamics: II

• Let $\Phi: X \to Y$ be a CP map with minimal dilation (E, f):



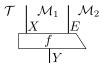
• If f is an isometry then we say that the CP map is a *channel*.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

A primer on 2-categories Categorical quantum mechanics Quantum relations 00000000 Quantum relations 0000000 Quantum graphs Infinite dime

\mathcal{T} -dynamics: II

• Let $\Phi: X \to Y$ be a CP map with minimal dilation (E, f):



• If f is an isometry then we say that the CP map is a *channel*.

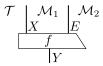
▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

 If f is unitary then we say that the CP map is a unital *-homomorphism.

A primer on 2-categories Categorical quantum mechanics Quantum relations 0000000000 Quantum graphs Infinite dime

\mathcal{T} -dynamics: II

• Let $\Phi: X \to Y$ be a CP map with minimal dilation (E, f):



- If f is an isometry then we say that the CP map is a *channel*.
- If f is unitary then we say that the CP map is a *unital* *-homomorphism.

Theorem ([Ver22, Thm. 4.11])

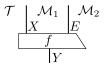
If $\mathcal{T} = \operatorname{Rep}_{fd}(G)$ for a CQG G, then X and Y correspond to f.d. G-W*-algebras, and:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A primer on 2-categories Categorical quantum mechanics Quantum relations 00000000 Quantum relations 0000000 Quantum graphs Infinite dime

\mathcal{T} -dynamics: II

• Let $\Phi: X \to Y$ be a CP map with minimal dilation (E, f):



- If f is an isometry then we say that the CP map is a *channel*.
- If f is unitary then we say that the CP map is a *unital* *-homomorphism.

Theorem ([Ver22, Thm. 4.11])

If $\mathcal{T} = \operatorname{Rep}_{fd}(G)$ for a CQG G, then X and Y correspond to f.d. $G-W^*$ -algebras, and:

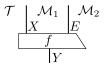
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• CP maps are covariant completely positive (CP) maps

A primer on 2-categories Categorical quantum mechanics Quantum relations 0000000000 Quantum graphs Infinite dime

\mathcal{T} -dynamics: II

• Let $\Phi: X \to Y$ be a CP map with minimal dilation (E, f):



- If f is an isometry then we say that the CP map is a *channel*.
- If f is unitary then we say that the CP map is a *unital* *-homomorphism.

Theorem ([Ver22, Thm. 4.11])

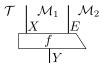
If $\mathcal{T} = \operatorname{Rep}_{fd}(G)$ for a CQG G, then X and Y correspond to f.d. $G-W^*$ -algebras, and:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- CP maps are covariant completely positive (CP) maps
- Channels are covariant CP unital maps

\mathcal{T} -dynamics: II

• Let $\Phi: X \to Y$ be a CP map with minimal dilation (E, f):



- If f is an isometry then we say that the CP map is a *channel*.
- If f is unitary then we say that the CP map is a *unital* *-homomorphism.

Theorem ([Ver22, Thm. 4.11])

If $\mathcal{T} = \operatorname{Rep}_{fd}(G)$ for a CQG G, then X and Y correspond to f.d. $G-W^*$ -algebras, and:

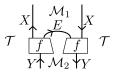
- CP maps are covariant completely positive (CP) maps
- Channels are covariant CP unital maps
- Unital *-homomorphisms are covariant unital *-homomorphisms.

Q-systems

A *T*-system X : *T* → *M* induces an algebra X ⊗ X* in *T*, called a *Q*-system, whose multiplication and unit are defined using rigidity:

$$\begin{array}{cccc} \tau & \mathcal{M} & \tau & & \mathcal{M} \\ \chi & \tau & \chi & & \tau \end{array}$$

• Let $X : \mathcal{T} \to \mathcal{M}_1$, $Y : \mathcal{T} \to \mathcal{M}_2$ be \mathcal{T} -systems. A CP map $X \to Y$ can equivalently be defined as a map between Q-systems (c.f. [Sel07]):



• Q-system dynamics is in the Schrodinger picture: channels are trace preserving rather than unital.

A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dime

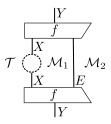
Quantum relations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dime

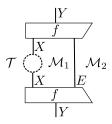
00000

Quantum relations



• Two levels of composition:

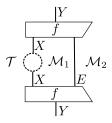
Quantum relations



- Two levels of composition:
 - The horizontal, 1-morphism level depends only on the Morita class of the *T*-system.

<ロト < 同ト < 回ト < 回ト = 三日 > 三日

Quantum relations

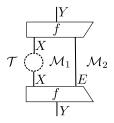


- Two levels of composition:
 - The horizontal, 1-morphism level depends only on the Morita class of the *T*-system.
 - The vertical, 2-morphism level depends on the \mathcal{T} -system itself.

(日) (四) (日) (日) (日)

A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dime

Quantum relations



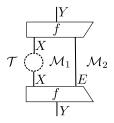
- Two levels of composition:
 - The horizontal, 1-morphism level depends only on the Morita class of the $\mathcal{T}\mbox{-system}.$
 - The vertical, 2-morphism level depends on the \mathcal{T} -system itself.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• In this talk we'll look closely at the 1-morphisms, which we'll interpret as *abstract quantum relations*.

A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dime

Quantum relations



- Two levels of composition:
 - The horizontal, 1-morphism level depends only on the Morita class of the $\mathcal{T}\mbox{-system}.$
 - The vertical, 2-morphism level depends on the \mathcal{T} -system itself.
- In this talk we'll look closely at the 1-morphisms, which we'll interpret as *abstract quantum relations*.
- Forthcoming work: objects \mathcal{M} can be interpreted as equivalence classes of reference frames. Simple objects of \mathcal{M} are classical types associated with the frame.

• The objects of $\operatorname{Mod}_{\mathit{fd}}(\mathcal{T})$ are *semisimple* module categories.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

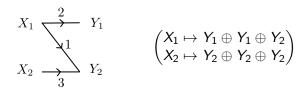
- The objects of $\operatorname{Mod}_{\mathit{fd}}(\mathcal{T})$ are *semisimple* module categories.
- A functor between semisimple categories is a lot like a relation:

- The objects of $\operatorname{Mod}_{\mathit{fd}}(\mathcal{T})$ are *semisimple* module categories.
- A functor between semisimple categories is a lot like a relation:

• Completely determined by the simple objects.

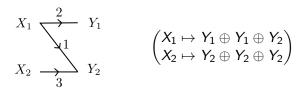
- The objects of $\operatorname{Mod}_{\mathit{fd}}(\mathcal{T})$ are *semisimple* module categories.
- A functor between semisimple categories is a lot like a relation:
 - Completely determined by the simple objects.
 - Simple objects will be mapped to a direct sum of simple objects.

- The objects of $\operatorname{Mod}_{\mathit{fd}}(\mathcal{T})$ are *semisimple* module categories.
- A functor between semisimple categories is a lot like a relation:
 - Completely determined by the simple objects.
 - Simple objects will be mapped to a direct sum of simple objects.
- This can be seen as a quantum relation between the sets of simple objects, where each pairing is assigned a multiplicity/dimension:



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The objects of $\operatorname{Mod}_{\mathit{fd}}(\mathcal{T})$ are *semisimple* module categories.
- A functor between semisimple categories is a lot like a relation:
 - Completely determined by the simple objects.
 - Simple objects will be mapped to a direct sum of simple objects.
- This can be seen as a quantum relation between the sets of simple objects, where each pairing is assigned a multiplicity/dimension:



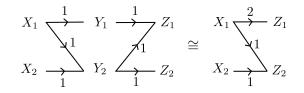
When T ≃ Rep_{fd}(G) the 1-morphisms are equivariant bimodules (c.f. [Wea12]).

Quantum relations between \mathcal{T} -systems

• We want relations to go between \mathcal{T} -systems and not just \mathcal{T} -Morita classes.

Quantum relations between \mathcal{T} -systems

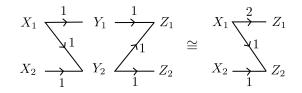
- We want relations to go between $\mathcal{T}\text{-systems}$ and not just $\mathcal{T}\text{-Morita classes.}$
- The problem with abstract quantum relations can be seen by composition of two classical relations:



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Quantum relations between \mathcal{T} -systems

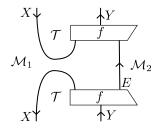
- We want relations to go between \mathcal{T} -systems and not just \mathcal{T} -Morita classes.
- The problem with abstract quantum relations can be seen by composition of two classical relations:

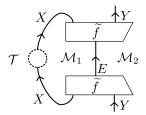


• To solve this problem we must take account of the 2-morphism structure.

Covariant Choi's theorem

 Using rigidity, CP maps X → Y can be identified with positive operators in the W*-algebra End(X* ⊗ Y):



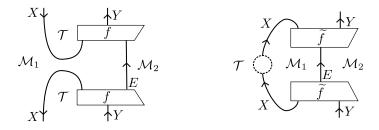


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A primer on 2-categories Categorical quantum mechanics 0000000 Underlying relations 0000000 Quantum graphs 000000 Infinite dime

Covariant Choi's theorem

 Using rigidity, CP maps X → Y can be identified with positive operators in the W*-algebra End(X* ⊗ Y):



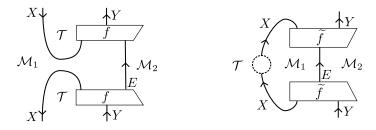
This is a bijective correspondence (in fact, an isomorphism of convex cones).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A primer on 2-categories Categorical quantum mechanics Quantum relations 0000000000 Quantum graphs 000000 Infinite dime

Covariant Choi's theorem

 Using rigidity, CP maps X → Y can be identified with positive operators in the W*-algebra End(X* ⊗ Y):



This is a bijective correspondence (in fact, an isomorphism of convex cones).

• Notation: If $\Phi : X \to Y$ is a CP map, then $\widetilde{\Phi} \in \operatorname{End}(X^* \otimes Y)$ is the associated positive operator.

A primer on 2-categories Categorical quantum mechanics Quantum relations 000000 Quantum graphs Infinite dime

Quantum relations

Let X, Y be T-systems. We define a quantum relation X → Y to be a projection \$\tilde{\pi}\$ ∈ End(X* ⊗ Y).

Quantum relations

- Let X, Y be \mathcal{T} -systems. We define a *quantum relation* $X \to Y$ to be a projection $\widetilde{\pi} \in \operatorname{End}(X^* \otimes Y)$.
- Notice that (by idempotent splitting) every projection has an underlying abstract relation:

Quantum relations

- Let X, Y be T-systems. We define a quantum relation X → Y to be a projection \$\tilde{\pi}\$ ∈ End(X* ⊗ Y).
- Notice that (by idempotent splitting) every projection has an underlying abstract relation:

Being a positive operator in the Choi space, a quantum relation π̃ is also a CP map π : X → Y:

$$\begin{array}{c|c} X & & \mathcal{M}_1 & \downarrow_E & \mathcal{M}_2 \\ & & & & & \\ \mathcal{T} & & & & \uparrow_Y \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Quantum relations

- Let X, Y be T-systems. We define a quantum relation X → Y to be a projection \$\tilde{\pi}\$ ∈ End(X* ⊗ Y).
- Notice that (by idempotent splitting) every projection has an underlying abstract relation:

Being a positive operator in the Choi space, a quantum relation π̃ is also a CP map π : X → Y:

$$\begin{array}{c} X \\ \mathcal{M}_1 \\ \mathcal{M}_1 \\ \mathcal{M}_2 \\ \mathcal$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• C.f. [Kor20].

Underlying relations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The underlying quantum relation of a CP map

 Every CP map Φ : X → Y has a minimal dilation (E, f). The minimal dilation is unique up to unitary isomorphism.

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

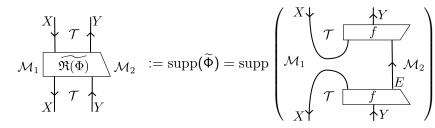
The underlying quantum relation of a CP map

- Every CP map Φ : X → Y has a minimal dilation (E, f). The minimal dilation is unique up to unitary isomorphism.
- The underlying quantum relation ℜ(Φ) : X → Y of the CP map is defined using the Choi isomorphism:

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

The underlying quantum relation of a CP map

- Every CP map Φ : X → Y has a minimal dilation (E, f). The minimal dilation is unique up to unitary isomorphism.
- The underlying quantum relation ℜ(Φ) : X → Y of the CP map is defined using the Choi isomorphism:

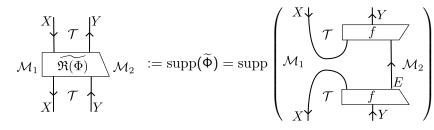


(日) (四) (日) (日) (日)

Sac

The underlying quantum relation of a CP map

- Every CP map Φ : X → Y has a minimal dilation (E, f). The minimal dilation is unique up to unitary isomorphism.
- The underlying quantum relation ℜ(Φ) : X → Y of the CP map is defined using the Choi isomorphism:

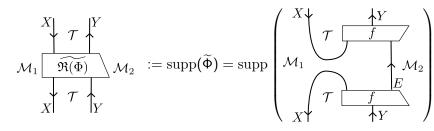


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

• The projection $\widetilde{\mathfrak{R}(\Phi)}$ splits to an isometry $\iota: E \to X^* \otimes Y$.

The underlying quantum relation of a CP map

- Every CP map Φ : X → Y has a minimal dilation (E, f). The minimal dilation is unique up to unitary isomorphism.
- The underlying quantum relation ℜ(Φ) : X → Y of the CP map is defined using the Choi isomorphism:



- The projection $\mathfrak{H}(\overline{\Phi})$ splits to an isometry $\iota: E \to X^* \otimes Y$.
- The relation obtained does not depend on the choice of dilation.

Motivation

• What does the underlying quantum relation of a channel tell us about the channel?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Motivation

- What does the underlying quantum relation of a channel tell us about the channel?
- Classical zero-error communication theory [Sha56]:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Motivation

- What does the underlying quantum relation of a channel tell us about the channel?
- Classical zero-error communication theory [Sha56]:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• The underlying quantum relation should tell us about zero-error properties, such as reversibility.

Motivation

- What does the underlying quantum relation of a channel tell us about the channel?
- Classical zero-error communication theory [Sha56]:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The underlying quantum relation should tell us about zero-error properties, such as reversibility.
- We will first show functoriality of \mathfrak{R} .

The category of CP maps

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• The category \mathcal{T} -CP has:

The category of CP maps

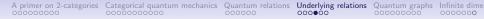
▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

- The category \mathcal{T} -CP has:
 - Objects: *T*-systems

The category of CP maps

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

- The category \mathcal{T} -CP has:
 - Objects: *T*-systems
 - Morphisms: CP maps



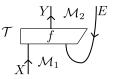
The category of CP maps

- The category \mathcal{T} -CP has:
 - Objects: *T*-systems
 - Morphisms: CP maps
- There are subcategories *T*-Alg ⊂ *T*-Chan ⊂ *T*-CP whose morphisms are unital *-homomorphisms and channels respectively.

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

The category of CP maps

- The category *T*-CP has:
 - Objects: *T*-systems
 - Morphisms: CP maps
- There are subcategories *T*-Alg ⊂ *T*-Chan ⊂ *T*-CP whose morphisms are unital *-homomorphisms and channels respectively.
- *T*-CP has a dagger structure which is *not* inherited by these two subcategories. This takes a CP map X → Y with dilation (E, f) to a CP map Y → X with the following dilation:



This is known as the *adjoint* of a CP map.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

The category of quantum relations

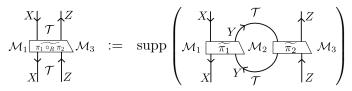
Let π₁ : X → Y, π₂ : Y → Z be quantum relations. We define the composition π₂ ∘_R π₁ : X → Z as follows:

$$\begin{array}{cccc} X & \mathcal{T} \\ \mathcal{M}_1 & \mathcal{T}_{\mathbb{Z}} \\ & \mathcal{M}_1 & \mathcal{T}_{\mathbb{Z}} \\ & \mathcal{T} & \mathcal{T} \\ & X & \mathcal{T} & \mathcal{T} \end{array} := & \operatorname{supp} \begin{pmatrix} X & \mathcal{T} & \mathcal{T} \\ \mathcal{M}_1 & \mathcal{T} & \mathcal{M}_2 \\ & \mathcal{T} & \mathcal{T} & \mathcal{M}_3 \\ & X & \mathcal{T} & \mathcal{T} \\ \end{array} \end{pmatrix}$$

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

The category of quantum relations

Let π₁ : X → Y, π₂ : Y → Z be quantum relations. We define the composition π₂ ∘_R π₁ : X → Z as follows:

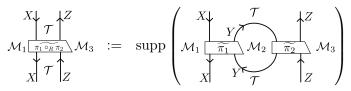


• The identity relation $\Delta_X : X \to X$ is defined as follows:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The category of quantum relations

Let π₁ : X → Y, π₂ : Y → Z be quantum relations. We define the composition π₂ ∘_R π₁ : X → Z as follows:



• The identity relation $\Delta_X : X \to X$ is defined as follows:

• The resulting category *T*-Rel has a dagger — the *converse*:

The underlying quantum relation of a CP map Proposition ([Ver24, Prop. 3.5])

There is a full and faithful identity-on-objects dagger functor $\mathfrak{R} : \mathcal{T}\text{-}\mathrm{CP} \to \mathcal{T}\text{-}\mathrm{Rel}$, which sends a CP map to its underlying relation.

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

The underlying quantum relation of a CP map Proposition ([Ver24, Prop. 3.5])

There is a full and faithful identity-on-objects dagger functor $\mathfrak{R} : \mathcal{T}\text{-}\mathrm{CP} \to \mathcal{T}\text{-}\mathrm{Rel}$, which sends a CP map to its underlying relation.

Proof.

 The nontrivial part is showing that composition is preserved; that is, for Φ : X → Y, Ψ : Y → Z we have ℜ(Ψ ∘ Φ) = ℜ(Ψ) ∘_R ℜ(Φ).

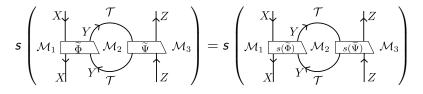
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The underlying quantum relation of a CP map Proposition ([Ver24, Prop. 3.5])

There is a full and faithful identity-on-objects dagger functor $\mathfrak{R}: \mathcal{T}\text{-}\mathrm{CP} \to \mathcal{T}\text{-}\mathrm{Rel}$, which sends a CP map to its underlying relation.

Proof.

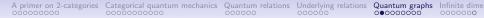
- The nontrivial part is showing that composition is preserved; that is, for Φ : X → Y, Ψ : Y → Z we have ℜ(Ψ ∘ Φ) = ℜ(Ψ) ∘_R ℜ(Φ).
- This comes down to equality of the supports



・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Quantum graphs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



Quantum graphs

• A quantum graph $\Gamma: X \to X$ is a symmetric relation [Wea21].

A primer on 2-categories Categorical quantum mechanics Quantum relations 0000000 October Categorical quantum mechanics 000000 October Categories O

Quantum graphs

- A quantum graph $\Gamma: X \to X$ is a symmetric relation [Wea21].
- By dagger functoriality of ℜ, this can be expressed by Γ[†] = Γ; or, in the Choi space, Γ^T = Γ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Quantum graphs

- A quantum graph $\Gamma: X \to X$ is a symmetric relation [Wea21].
- By dagger functoriality of ℜ, this can be expressed by Γ[†] = Γ; or, in the Choi space, Γ̃^T = Γ̃.
- Examples: *discrete* and *complete* confusability graphs:

$$\widetilde{\Delta_X} := \underbrace{\begin{array}{c} \mathcal{T} \\ (\widetilde{d_X}^{-1}) \\ \mathcal{T} \\ \mathcal{T} \\ \mathcal{X} \end{array}}_X \qquad \widetilde{\kappa_X} := \mathcal{M} \\ \mathcal{M} \\ \mathcal{T} \\ \mathcal{M} \\ \mathcal$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Quantum graphs

- A quantum graph $\Gamma: X \to X$ is a symmetric relation [Wea21].
- By dagger functoriality of ℜ, this can be expressed by Γ[†] = Γ; or, in the Choi space, Γ̃^T = Γ̃.
- Examples: *discrete* and *complete* confusability graphs:

$$\widetilde{\Delta_X} := \underbrace{\begin{pmatrix} \mathcal{T} \\ \langle \mathcal{I}_X \rangle \\ \mathcal{T} \\ \mathcal{T} \\ X \end{pmatrix}}_{\mathcal{K}} \widetilde{\kappa_X} := \mathcal{M} \xrightarrow{\mathcal{T}}_{\mathcal{K}} \mathcal{M}$$

• A quantum graph $\Gamma : X \to X$ is *confusability* if $\Delta_X < \widetilde{\Gamma}$, or *simple* if $\Delta_X \perp \widetilde{\Gamma}$.

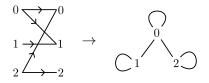
Quantum graphs

- A quantum graph $\Gamma: X \to X$ is a symmetric relation [Wea21].
- By dagger functoriality of ℜ, this can be expressed by Γ[†] = Γ; or, in the Choi space, Γ̃^T = Γ̃.
- Examples: *discrete* and *complete* confusability graphs:

$$\widetilde{\Delta_X} := \underbrace{\begin{pmatrix} \mathcal{T} \\ \widetilde{\Delta_X} \end{pmatrix}}_{\mathcal{T} X} \mathcal{M} \qquad \widetilde{\kappa_X} := \mathcal{M} \quad \mathcal{T} \quad \mathcal{M} \quad$$

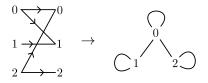
- A quantum graph $\Gamma : X \to X$ is *confusability* if $\Delta_X < \widetilde{\Gamma}$, or *simple* if $\Delta_X \perp \widetilde{\Gamma}$.
- The complement Γ → κ_X − Γ gives a bijective correspondence between simple and confusability graphs.

In classical zero-error communication, we often need even less information than the underlying relation [Sha56]:



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In classical zero-error communication, we often need even less information than the underlying relation [Sha56]:

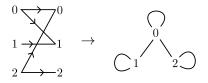


Proposition ([Ver24, Prop. 3.11])

Let $\Phi : X \to Y$ be a CP morphism. Then $\mathfrak{R}(\Phi \circ \Phi^{\dagger}) : Y \to Y$ is a quantum graph. It is a confusability graph iff Φ is a channel.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In classical zero-error communication, we often need even less information than the underlying relation [Sha56]:



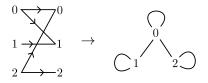
Proposition ([Ver24, Prop. 3.11])

Let $\Phi : X \to Y$ be a CP morphism. Then $\mathfrak{R}(\Phi \circ \Phi^{\dagger}) : Y \to Y$ is a quantum graph. It is a confusability graph iff Φ is a channel.

• We recover the quantum confusability graphs of channels defined in [DSW13].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In classical zero-error communication, we often need even less information than the underlying relation [Sha56]:



Proposition ([Ver24, Prop. 3.11])

Let $\Phi : X \to Y$ be a CP morphism. Then $\mathfrak{R}(\Phi \circ \Phi^{\dagger}) : Y \to Y$ is a quantum graph. It is a confusability graph iff Φ is a channel.

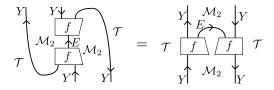
- We recover the quantum confusability graphs of channels defined in [DSW13].
- Alternatively, one can work with the simple complement, called the *distinguishability graph* [Sta16].

Duan's theorem Theorem ([Ver24, Prop. 3.12], c.f.[Dua09, Lem. 2])

Let $\Gamma : Y \to Y$ be a confusability graph. Then there exists a channel $\Phi : X \to Y$ such that $\Re(\Phi \circ \Phi^{\dagger}) = \Gamma$.

Proof.

- $\widetilde{\Delta_Y} < \widetilde{\Gamma} \Rightarrow \widetilde{\Gamma} = \widetilde{\Delta_Y} + (\widetilde{\Gamma} \widetilde{\Delta_Y})$. The summands are orthogonal projections; moreover they are symmetric.
- We use the Q-system version of Choi's theorem:



 We get an equality of CP maps Γ = Δ_Y + (Γ − Δ_Y), where the summands are self-adjoint CP maps Y → Y.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

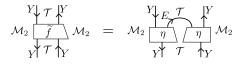
Duan's theorem

- We were considering the equality of CP maps $\Gamma = \Delta_Y + (\Gamma \Delta_Y).$
- We have the following concrete expression for Δ_Y :

- We observe that Δ_Y is a positive invertible operator in End(Y ⊗ Y*).
- Therefore for small enough $\tau > 0$, the CP map $f := \Delta_Y + \tau(\Gamma \Delta_Y)$ is positive.
- We now go back to the Choi space and consider the positive operator *f* = Δ_Y + τ(Γ − Δ_Y) ∈ End(Y* ⊗ Y).

Duan's theorem

- We were considering the positive operator $\widetilde{f} = \widetilde{\Delta_Y} + \tau(\widetilde{\Gamma} - \widetilde{\Delta_Y}) \in \operatorname{End}(Y^* \otimes Y).$
- Fact 1: Positivity of f implies that f̃ is CP, in the sense that it has a dilation η : X^{*} → X^{*} ⊗ E:



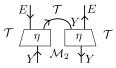
• Fact 2: \tilde{f} is furthermore a channel:

$$\mathcal{M}_{2} \underbrace{\begin{pmatrix} \mathcal{T} \\ \tilde{f} \\ Y \end{pmatrix}}^{Y} = \mathcal{M}_{2} \underbrace{\begin{pmatrix} \mathcal{T} \\ \widetilde{\Delta_{Y}} \end{pmatrix}}_{Y}^{Y} + \tau \underbrace{\begin{pmatrix} \mathcal{M}_{2} \\ \widetilde{\Delta_{Y}} \end{pmatrix}}_{Y}^{Y} - \underbrace{\begin{pmatrix} \mathcal{M}_{2} \\ \widetilde{\Gamma} - \widetilde{\Delta_{Y}} \end{pmatrix}}_{Y} = \underbrace{\mathcal{M}_{2}}_{Y} \mathcal{M}_{2}$$

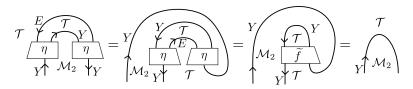
• Fact 3: $s(\tilde{f}) = s(\widetilde{\Delta_Y} + \tau(\widetilde{\Gamma} - \widetilde{\Delta_Y})) = s(\widetilde{\Gamma}) = \widetilde{\Gamma}.$

(ロ)、(型)、(E)、(E)、(E)、(O)への

- We were discussing the positive operator *f* ∈ End(Y* ⊗ Y). It has a dilation η : Y* → Y* ⊗ E.
- We define the following CP map $\Phi: E^* \to Y$:



Φ is a channel:

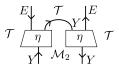


• We will finish by showing that its quantum confusability graph is Γ.

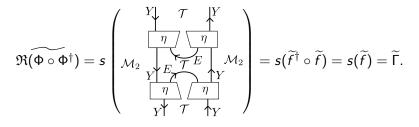
(日) (四) (日) (日) (日)

Duan's theorem

• We just defined a channel $\Phi: E^* \to Y$:



We have



・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

More on quantum relations and zero error communication

Theorem (Reversibility of channels)

[[Ver24, Thm. 4.4]] Let $\Phi : Y \to X$ be a channel. There exists a channel $\Psi : X \to Y$ such that $\Phi \circ \Psi = id_X$ iff the confusability graph of Φ is discrete.

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

More on quantum relations and zero error communication

Theorem (Reversibility of channels)

[[Ver24, Thm. 4.4]] Let $\Phi : Y \to X$ be a channel. There exists a channel $\Psi : X \to Y$ such that $\Phi \circ \Psi = id_X$ iff the confusability graph of Φ is discrete.

To state the following theorem we needed \mathcal{T} to be a braided tensor category to obtain a tensor product of \mathcal{T} -systems.

More on quantum relations and zero error communication

Theorem (Reversibility of channels)

[[Ver24, Thm. 4.4]] Let $\Phi : Y \to X$ be a channel. There exists a channel $\Psi : X \to Y$ such that $\Phi \circ \Psi = id_X$ iff the confusability graph of Φ is discrete.

To state the following theorem we needed \mathcal{T} to be a braided tensor category to obtain a tensor product of \mathcal{T} -systems.

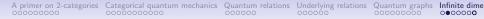
Theorem (Source channel coding)

[[Ver24, Thm. 5.3], c.f. [Sta16])] A covariant channel is a valid encoding channel for a zero-error source-channel coding scheme precisely when it is a homomorphism from the confusability graph of the source to the confusability graph of the communication channel.

Infinite dimension: outlook

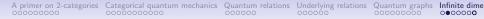
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• W^* -tensor category \mathcal{T} , no longer rigid.



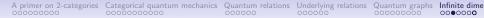
- W^* -tensor category \mathcal{T} , no longer rigid.
- In the 'compact quantum' setting T should be the unitary ind-category of a rigid W*-tensor category [NY16][JP17].

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

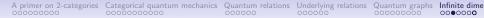


- W^* -tensor category \mathcal{T} , no longer rigid.
- In the 'compact quantum' setting T should be the unitary ind-category of a rigid W*-tensor category [NY16][JP17].
- More generally, category of unitary representations of a locally compact quantum group?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

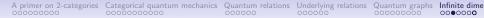


Cocomp : W*-tensor category T → W*-2-category Mod(T), defined as follows:

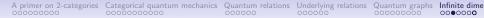


 Cocomp : W*-tensor category T → W*-2-category Mod(T), defined as follows:

• Objects: Left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$



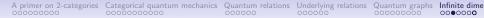
- Cocomp : W*-tensor category T → W*-2-category Mod(T), defined as follows:
 - Objects: Left *T*-module *W**-categories *M*,*N*,....
 - 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N}$: normal \mathcal{T} -module functors.



- Cocomp : W*-tensor category T → W*-2-category Mod(T), defined as follows:
 - Objects: Left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$
 - 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N}$: normal \mathcal{T} -module functors.

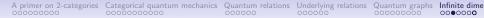
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

2-morphisms f, g, · · · : X → Y: Bounded natural transformations of T-module functors.



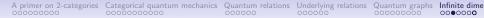
- Cocomp : W*-tensor category T → W*-2-category Mod(T), defined as follows:
 - Objects: Left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$
 - 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N}$: normal \mathcal{T} -module functors.

- 2-morphisms f, g, · · · : X → Y: Bounded natural transformations of *T*-module functors.
- More generally, $Mod(\mathcal{C}) = Hom(\mathcal{C}, W^*Cat)$.



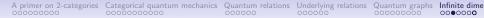
- Cocomp : W*-tensor category T → W*-2-category Mod(T), defined as follows:
 - Objects: Left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$
 - 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N}$: normal \mathcal{T} -module functors.

- 2-morphisms f, g, · · · : X → Y: Bounded natural transformations of T-module functors.
- More generally, $Mod(\mathcal{C}) = Hom(\mathcal{C}, W^*Cat)$.
- If *T* ≃ Rep(*G*) for CQG *G* then Mod(*T*) is the equivariant Morita 2-category:

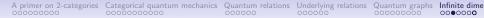


- Cocomp : W*-tensor category T → W*-2-category Mod(T), defined as follows:
 - Objects: Left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$
 - 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N}$: normal \mathcal{T} -module functors.

- 2-morphisms f, g, · · · : X → Y: Bounded natural transformations of T-module functors.
- More generally, $Mod(\mathcal{C}) = Hom(\mathcal{C}, W^*Cat)$.
- If *T* ≃ Rep(*G*) for CQG *G* then Mod(*T*) is the equivariant Morita 2-category:
 - Objects: G-W*-algebras.



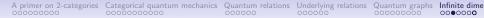
- Cocomp : W*-tensor category T → W*-2-category Mod(T), defined as follows:
 - Objects: Left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$
 - 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N}$: normal \mathcal{T} -module functors.
 - 2-morphisms f, g, · · · : X → Y: Bounded natural transformations of T-module functors.
- More generally, $Mod(\mathcal{C}) = Hom(\mathcal{C}, W^*Cat)$.
- If *T* ≃ Rep(*G*) for CQG *G* then Mod(*T*) is the equivariant Morita 2-category:
 - Objects: *G*-*W**-algebras.
 - 1-morphisms: *G*-equivariant correspondences/bimodules.



- Cocomp : W*-tensor category T → W*-2-category Mod(T), defined as follows:
 - Objects: Left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$
 - 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N}$: normal \mathcal{T} -module functors.
 - 2-morphisms f, g, · · · : X → Y: Bounded natural transformations of T-module functors.
- More generally, $Mod(\mathcal{C}) = Hom(\mathcal{C}, W^*Cat)$.
- If *T* ≃ Rep(*G*) for CQG *G* then Mod(*T*) is the equivariant Morita 2-category:
 - Objects: *G*-*W**-algebras.
 - 1-morphisms: *G*-equivariant correspondences/bimodules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• 2-morphisms: *G*-equivariant bimodule maps.

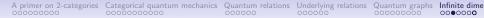


- Cocomp : W*-tensor category T → W*-2-category Mod(T), defined as follows:
 - Objects: Left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$
 - 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N}$: normal \mathcal{T} -module functors.
 - 2-morphisms f, g, · · · : X → Y: Bounded natural transformations of T-module functors.
- More generally, $Mod(\mathcal{C}) = Hom(\mathcal{C}, W^*Cat)$.
- If *T* ≃ Rep(*G*) for CQG *G* then Mod(*T*) is the equivariant Morita 2-category:
 - Objects: *G*-*W**-algebras.
 - 1-morphisms: *G*-equivariant correspondences/bimodules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

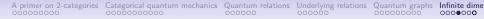
• 2-morphisms: *G*-equivariant bimodule maps.

 W^* -version basically shown in [DR25].

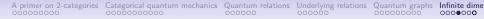


- Cocomp : W*-tensor category T → W*-2-category Mod(T), defined as follows:
 - Objects: Left \mathcal{T} -module W^* -categories $\mathcal{M}, \mathcal{N}, \ldots$
 - 1-morphisms $X, Y, \dots : \mathcal{M} \to \mathcal{N}$: normal \mathcal{T} -module functors.
 - 2-morphisms f, g, · · · : X → Y: Bounded natural transformations of T-module functors.
- More generally, $Mod(\mathcal{C}) = Hom(\mathcal{C}, W^*Cat)$.
- If *T* ≃ Rep(*G*) for CQG *G* then Mod(*T*) is the equivariant Morita 2-category:
 - Objects: *G*-*W**-algebras.
 - 1-morphisms: *G*-equivariant correspondences/bimodules.
 - 2-morphisms: *G*-equivariant bimodule maps.

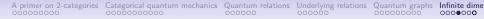
 W^* -version basically shown in [DR25]. For hints towards C^* -version see [DCY13][Nes13].



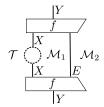
• Yoneda embedding works as in the finite-dimensional case.



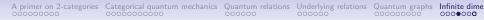
- Yoneda embedding works as in the finite-dimensional case.
- \mathcal{T} -Morita classes are equivalence classes of objects, \mathcal{T} -systems are generating 1-morphisms $\mathcal{T} \to \mathcal{M}$.



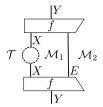
- Yoneda embedding works as in the finite-dimensional case.
- \mathcal{T} -Morita classes are equivalence classes of objects, \mathcal{T} -systems are generating 1-morphisms $\mathcal{T} \to \mathcal{M}$.
- Stinespring's theorem should be provable:



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

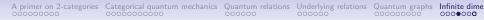


- Yoneda embedding works as in the finite-dimensional case.
- \mathcal{T} -Morita classes are equivalence classes of objects, \mathcal{T} -systems are generating 1-morphisms $\mathcal{T} \to \mathcal{M}$.
- Stinespring's theorem should be provable:

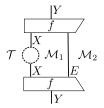


Already proven for arbitrary W^* -algebras without a *G*-action [AV24].

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○



- Yoneda embedding works as in the finite-dimensional case.
- \mathcal{T} -Morita classes are equivalence classes of objects, \mathcal{T} -systems are generating 1-morphisms $\mathcal{T} \to \mathcal{M}$.
- Stinespring's theorem should be provable:



Already proven for arbitrary W^* -algebras without a *G*-action [AV24].

• So dynamics again splits into vertical and horizontal levels.

The lack of rigidity

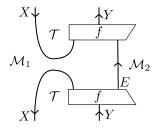
Interpret 1-morphisms as abstract quantum relations, following [Wea12].

The lack of rigidity

- Interpret 1-morphisms as abstract quantum relations, following [Wea12].
- If the category Mod(*T*) has a conjugate we can define a quantum relation *X* → *Y* as a projection in *X* ⊗ *Y*.

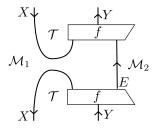
The lack of rigidity

- Interpret 1-morphisms as abstract quantum relations, following [Wea12].
- If the category Mod(*T*) has a conjugate we can define a quantum relation *X* → *Y* as a projection in *X* ⊗ *Y*.
- Unfortunately, for the underlying relation of a CP map we use Choi's theorem:



The lack of rigidity

- Interpret 1-morphisms as abstract quantum relations, following [Wea12].
- If the category $Mod(\mathcal{T})$ has a conjugate we can define a quantum relation $X \to Y$ as a projection in $\overline{X} \otimes Y$.
- Unfortunately, for the underlying relation of a CP map we use Choi's theorem:



 This depends on rigidity, and therefore so does our subsequent analysis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thanks for listening!

References I

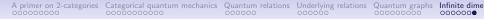
■ Robert Allen and Dominic Verdon. CP[∞] and beyond: 2-categorical dilation theory. Theory and Applications of Categories, 41(50), 2024. arXiv:2310.15776.

Bob Coecke and Chris Heunen.
 Pictures of complete positivity in arbitrary dimension.
 Information and Computation, 250:50–58, 2016.
 arXiv:1110.3055, doi:10.1016/j.ic.2016.02.007.

Quan Chen, Roberto Hernández Palomares, Corey Jones, and David Penneys.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Q-system completion for C* 2-categories. Journal of Functional Analysis, 283(3), 2022. arXiv:2105.12010.



References II

Kenny De Commer and Makoto Yamashita.

Tannaka-Krein duality for compact quantum homogeneous spaces. I. general theory.

Theory and Applications of Categories, 28(31):1099–1138, 2013.

arXiv:1211.6552.

Christopher Douglas and David Reutter.
 Fusion 2-categories and a state-sum invariant for 4-manifolds.
 2018.
 arXiv:1812.11933.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References III

Joeri De Ro.

A categorical interpretation of Morita equivalence for dynamical von Neumann algebras.

Journal of Algebra, 666:673-702, 2025. arXiv:2408.07701, doi:10.1016/j.jalgebra.2024.12.008.

 R. Duan, S. Severini, and A. Winter.
 Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number.
 IEEE Transactions on Information Theory, 59(2):1164–1174, 2013.
 arXiv:1002.2514, doi:10.1109/TIT.2012.2221677.

References IV

Runyao Duan.

Super-activation of zero-error capacity of noisy quantum channels.

2009.

arXiv:0906.2527.

Corey Jones and David Penneys.
 Operator algebras in rigid C*-tensor categories.
 Commun. Math. Phys., 355:1121–1188, 2017.
 arXiv:1611.04620, doi:10.1007/s00220-017-2964-0.

Andre Kornell.

Quantum sets.

J. Math. Phys., 61(10), 2020. arXiv:1804.00581, doi:10.1063/1.5054128.

References V

Sergey Neshveyev.
 Duality theory for nonergodic actions.

2013.

arXiv:1303.6207.

Sergey Neshveyev and Makoto Yamashita.
 Drinfeld center and representation theory for monoidal categories.
 Commun. Math. Phys., 345:385–434, 2016.

arXiv:1501.07390, doi:10.1007/s00220-016-2642-7.

Peter Selinger.

Dagger compact closed categories and completely positive maps: (extended abstract). *Electronic Notes in Theoretical Computer Science*,

170:139-163, 2007.

References VI

URL: https:

//www.mscs.dal.ca/~selinger/papers/dagger.pdf.

C. Shannon.

The zero error capacity of a noisy channel.

IRE Transactions on Information Theory, 2(3):8–19, 1956. doi:10.1109/TIT.1956.1056798.

Dan Stahlke.

Quantum zero-error source-channel coding and non-commutative graph theory.

IEEE Transactions on Information Theory, 62(1), 2016. arXiv:1405.5254, doi:10.1109/TIT.2015.2496377.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References VII

Dominic Verdon.

A covariant Stinespring theorem.

Journal of Mathematical Physics, 63(9):091705, 09 2022. arXiv:2108.09872, doi:10.1063/5.0071215.

Dominic Verdon.

Covariant quantum combinatorics with applications to zero error communication.

Commun. Math. Phys., 405(51), 2024. arXiv:2302.07776, doi:10.1007/s00220-023-04898-0.

Nik Weaver.

Quantum relations.

Mem. Amer. Math. Soc., 215(v-vi):81-140, 2012. arXiv:1506.03892.

References VIII

Nik Weaver.

Quantum graphs as quantum relations.

J Geom Anal, 31:9090–9112, 2021.

arXiv:1506.03892, doi:10.1007/s12220-020-00578-w.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで