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This talk is based on:

• Verdon, D.; A covariant Stinespring theorem. J. Math. Phys.
63 (9): 091705 [Ver22]

• Verdon, D.; Covariant Quantum Combinatorics with
Applications to Zero-Error Communication. Commun. Math.
Phys. 405, 51 (2024). [Ver24]

• Allen, R. and Verdon, D.; CP∞ and beyond: 2-categorical
dilation theory. Th. Appl. Cat. Vol. 41, No. 50, pp
1783-1811 (2024) [AV24]

and some new work in production now.
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The diagrammatic calculus of a 2-category: I

• We will discuss C ∗- and W ∗-2-categories.

• A 2-category has objects, morphisms between the objects
(called 1-morphisms) and morphisms between the
1-morphisms (called 2-morphisms).

• 2-categories have a convenient planar diagrammatic calculus
that handles composition of these different types of morphism.

• This generalises the ‘tensor network/tensor diagram’ calculus
for tensor categories. A tensor category is precisely a
2-category with a single object.
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The diagrammatic calculus of a 2-category: II
• We represent objects r , s, . . . as planar regions:

• 1-morphisms X : r → s are wires separating the r -region on
the left from the s-region on the right:

The identity 1-morphism 1r : r → r is invisible.

• Composition of 1-morphisms is represented by horizontal
juxtaposition, read from left to right:

X ⊗ Y : r → t



A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

The diagrammatic calculus of a 2-category: II
• We represent objects r , s, . . . as planar regions:

• 1-morphisms X : r → s are wires separating the r -region on
the left from the s-region on the right:

The identity 1-morphism 1r : r → r is invisible.

• Composition of 1-morphisms is represented by horizontal
juxtaposition, read from left to right:

X ⊗ Y : r → t



A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

The diagrammatic calculus of a 2-category: II
• We represent objects r , s, . . . as planar regions:

• 1-morphisms X : r → s are wires separating the r -region on
the left from the s-region on the right:

The identity 1-morphism 1r : r → r is invisible.

• Composition of 1-morphisms is represented by horizontal
juxtaposition, read from left to right:

X ⊗ Y : r → t



A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

The diagrammatic calculus of a 2-category: III
• 2-morphisms f : X → Y are represented by boxes connecting
X below to Y above. (Identity 2-morphisms are invisible.)

• Vertical composition is read from bottom to top:

g ◦ f : X → Z

• Horizontal composition is read from left to right:

f ⊗ g : X1 ⊗ X2 → Y1 ⊗ Y2
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Dagger 2-categories
• A dagger structure on a 2-category generalises the Hermitian
adjoint of linear maps between Hilbert spaces.

• Every 2-morphism f : X → Y has a dagger f † : Y → X
satisfying:

(f †)† = f (g ◦ f )† = f † ◦ g † (f ⊗ g)† = f † ⊗ g †

• The dagger is represented diagrammatically by flipping the
diagram in a horizontal axis: †

=

• A 2-morphism f : X → Y is
• an isometry if f † ◦ f = idX , and
• a unitary if additionally f ◦ f † = idY .
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C ∗- and W ∗-2-categories

• We say that a dagger 2-category is a C ∗-2-category if it has
some extra structure. In particular:

• The 2-morphism sets Hom(X ,Y ) are complex vector spaces
(in fact, Banach spaces).

• Composition (resp. dagger) is linear (resp. antilinear).
• The space End(X ) is a unital C∗-algebra

(product=composition, involution=dagger):

• For any f : X → Y , f † ◦ f is a positive element of End(X ).

• A C ∗-2-category is a W ∗-2-category if additionally every
2-morphism space Hom(X ,Y ) has a predual. In particular,
the endomorphism algebras End(X ) are W ∗-algebras.
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Rigidity
• In a rigid C ∗- or W ∗-2-category, every 1-morphism X : r → s
has a dual 1-morphism X ∗ : s → r :

• There are cup and cap 2-morphisms ηX : 1s → X ∗ ⊗ X and
ϵX : X ⊗ X ∗ → 1r :

• These satisfy the snake or zigzag equations:

= =
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Conjugate and transpose
• Note that the dagger does not reverse the direction of the
arrows indicating duality:( )†

=

( )†
=

• We define the transpose and conjugate of a 2-morphism
f : X → Y :

:= =

:=

 †

=
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Sliding equations

We can slide the 2-morphisms around cups and caps:

= = = =

= = = =
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Categorical quantum mechanics
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Rigid W ∗-tensor categories

• A rigid W ∗-tensor category T encodes symmetry.

• A W ∗-tensor category is a W ∗-2-category with a single object.
• Conventionally we ignore the single object:

• 1-morphisms = objects
• 1-morphism composition = ‘tensor product’.

• Motivating example: the category Repfd(G ) of
finite-dimensional unitary representations of a compact
quantum group G .
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Semisimplicity

• The Hom-categories Hom(r , s) in a W ∗-2-category are
W ∗-categories.

• An object X in a W ∗-category is called simple if End(X ) ∼= C.
• A W ∗-category is semisimple if:

• It has a direct sum (a.k.a. dagger biproduct).
• Every object is unitarily isomorphic to a finite direct sum of

simple objects {Xi}i∈I .

• We write
X ∼=

⊕
i∈I

di · Xi

where di is the multiplicity of the simple object Xi in the
direct sum.

• Example: rigid W ∗-tensor categories.
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Q-system completion

• Rigid W ∗-tensor category T → rigid W ∗-2-category
Modfd(T ), defined as follows:

• Objects: ‘Finite-dimensional’ left T -module W ∗-categories
M,N , . . . :

⊗ : T ×M → M

• 1-morphisms X ,Y , · · · : M → N : T -module functors.
• 2-morphisms f , g , · · · : X → Y : natural transformations of

T -module functors.

• If T ≃ Repfd(G ) for CQG G then Mod(T ) is the
finite-dimensional equivariant Morita 2-category:

• Objects: f.d. G -W ∗-algebras.
• 1-morphisms: G -equivariant bimodules.
• 2-morphisms: G -equivariant bimodule maps.

• This completion can also be defined in terms of Q-systems.

• See [DR18][CHPJP22][Ver22].
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Yoneda embedding of T in Modfd(T )
• The rigid W ∗-tensor category T is a module category over
itself, where T acts by tensor on the left.

• Acting by tensor on the right yields a tensor equivalence

EndT (T ) ≃ T

so T lives in Mod(T ) as the category of 1-morphisms T → T .

• There is an equivalence of module categories

M ≃ HomT (T ,M)

so M lives in Mod(T ) as the category of 1-morphisms
T → M.

• The module action is by composition in Mod(T ):

∼=
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Finite-dimensional T -systems

Definition
We say that an object X of a T -module category M is generating
if, for every object Y of M, there exists some V ∈ T and an
isometry ι : Y → V⊗X .

Definition (T -systems)

• We call an equivalence class of objects in Modfd(T ) (i.e. an
equivalence class of T -module categories) a T -Morita class.

• Let M be a representative of a T -Morita class. We call a
generating 1-morphism X : T → M a T -system in that
Morita class.

If T ≃ Repfd(G) then there is a bijective correspondence:
• Iso. classes of T -systems ↔ Iso. classes of f.d.

G -W ∗-algebras
• T -Morita classes ↔ equivariant Morita classes of f.d.
G -W ∗-algebras
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Algebra of observables

• Let X : T → M be a T -system.

• We call the W ∗-algebra End(X ) the algebra of observables on
the T -system X :

• If T ∼= Repfd(G ), then End(X ) is the fixed point subalgebra
of the associated f.d. G -W ∗-algebra.
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T -dynamics: I

Definition (C.f [CH16])

Let X : T → M1 and Y : T → M2 be T -systems. A dilation
X → Y is a pair of:

• a 1-morphism E : M1 → M2

• and a 2-morphism f : Y → X ⊗ E .

A dilation X → Y induces the following map End(X ) → End(Y )
on observables:
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T -dynamics: II

Definition (Cont.)

• A 2-morphism σ : E1 → E2 is a partial isometry if
σ† ◦ σ ∈ End(E1) is a projection.

• Dilations (E1, f1), (E2, f2) : X → Y are equivalent if there
exists a partial isometry σ : E1 → E2 such that:

= =

• We call a class of dilations X → Y under this equivalence
relation a CP map.

• Every CP map has a minimal dilation which is related to all
other dilations by an isometry.
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T -dynamics: II
• Let Φ : X → Y be a CP map with minimal dilation (E , f ):

• If f is an isometry then we say that the CP map is a channel.
• If f is unitary then we say that the CP map is a unital

∗-homomorphism.

Theorem ([Ver22, Thm. 4.11])

If T = Repfd(G ) for a CQG G , then X and Y correspond to f.d.
G -W ∗-algebras, and:

• CP maps are covariant completely positive (CP) maps

• Channels are covariant CP unital maps

• Unital ∗-homomorphisms are covariant unital
∗-homomorphisms.
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Q-systems
• A T -system X : T → M induces an algebra X ⊗ X ∗ in T ,
called a Q-system, whose multiplication and unit are defined
using rigidity:

• Let X : T → M1, Y : T → M2 be T -systems. A CP map
X → Y can equivalently be defined as a map between
Q-systems (c.f. [Sel07]):

• Q-system dynamics is in the Schrodinger picture: channels are
trace preserving rather than unital.
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Quantum relations

• Two levels of composition:

• The horizontal, 1-morphism level depends only on the Morita
class of the T -system.

• The vertical, 2-morphism level depends on the T -system itself.

• In this talk we’ll look closely at the 1-morphisms, which we’ll
interpret as abstract quantum relations.

• Forthcoming work: objects M can be interpreted as
equivalence classes of reference frames. Simple objects of M
are classical types associated with the frame.
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Functors as abstract quantum relations
• The objects of Modfd(T ) are semisimple module categories.

• A functor between semisimple categories is a lot like a relation:
• Completely determined by the simple objects.
• Simple objects will be mapped to a direct sum of simple

objects.

• This can be seen as a quantum relation between the sets of
simple objects, where each pairing is assigned a
multiplicity/dimension:

(
X1 7→ Y1 ⊕ Y1 ⊕ Y2

X2 7→ Y2 ⊕ Y2 ⊕ Y2

)

• When T ≃ Repfd(G ) the 1-morphisms are equivariant
bimodules (c.f. [Wea12]).
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Quantum relations between T -systems

• We want relations to go between T -systems and not just
T -Morita classes.

• The problem with abstract quantum relations can be seen by
composition of two classical relations:

∼=

• To solve this problem we must take account of the
2-morphism structure.
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Covariant Choi’s theorem

• Using rigidity, CP maps X → Y can be identified with
positive operators in the W ∗-algebra End(X ∗ ⊗ Y ):

This is a bijective correspondence (in fact, an isomorphism of
convex cones).

• Notation: If Φ : X → Y is a CP map, then Φ̃ ∈ End(X ∗ ⊗ Y )
is the associated positive operator.
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Quantum relations
• Let X ,Y be T -systems. We define a quantum relation

X → Y to be a projection π̃ ∈ End(X ∗ ⊗ Y ).

• Notice that (by idempotent splitting) every projection has an
underlying abstract relation:

=

• Being a positive operator in the Choi space, a quantum
relation π̃ is also a CP map π : X → Y :

• C.f. [Kor20].
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Underlying relations
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The underlying quantum relation of a CP map

• Every CP map Φ : X → Y has a minimal dilation (E , f ). The
minimal dilation is unique up to unitary isomorphism.

• The underlying quantum relation R(Φ) : X → Y of the CP
map is defined using the Choi isomorphism:

:= supp(Φ̃) = supp




• The projection R̃(Φ) splits to an isometry ι : E → X ∗ ⊗ Y .

• The relation obtained does not depend on the choice of
dilation.
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Motivation

• What does the underlying quantum relation of a channel tell
us about the channel?

• Classical zero-error communication theory [Sha56]:

→

• The underlying quantum relation should tell us about
zero-error properties, such as reversibility.

• We will first show functoriality of R.
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The category of CP maps

• The category T -CP has:

• Objects: T -systems
• Morphisms: CP maps

• There are subcategories T -Alg ⊂ T -Chan ⊂ T -CP whose
morphisms are unital ∗-homomorphisms and channels
respectively.

• T -CP has a dagger structure which is not inherited by these
two subcategories. This takes a CP map X → Y with dilation
(E , f ) to a CP map Y → X with the following dilation:

This is known as the adjoint of a CP map.
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The category of quantum relations
• Let π1 : X → Y , π2 : Y → Z be quantum relations. We
define the composition π2 ◦R π1 : X → Z as follows:

:= supp




• The identity relation ∆X : X → X is defined as follows:

• The resulting category T -Rel has a dagger — the converse:

7→
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The underlying quantum relation of a CP map
Proposition ([Ver24, Prop. 3.5])

There is a full and faithful identity-on-objects dagger functor
R : T -CP → T -Rel, which sends a CP map to its underlying
relation.

Proof.
• The nontrivial part is showing that composition is preserved;
that is, for Φ : X → Y , Ψ : Y → Z we have
R(Ψ ◦ Φ) = R(Ψ) ◦R R(Φ).

• This comes down to equality of the supports

s


 = s
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Quantum graphs
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Quantum graphs

• A quantum graph Γ : X → X is a symmetric relation [Wea21].

• By dagger functoriality of R, this can be expressed by Γ† = Γ;
or, in the Choi space, Γ̃T = Γ̃.

• Examples: discrete and complete confusability graphs:

∆̃X := κ̃X :=

• A quantum graph Γ : X → X is confusability if ∆̃X < Γ̃, or
simple if ∆̃X ⊥ Γ̃.

• The complement Γ̃ 7→ κ̃X − Γ̃ gives a bijective correspondence
between simple and confusability graphs.
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The confusability graph of a channel
In classical zero-error communication, we often need even less
information than the underlying relation [Sha56]:

→

Proposition ([Ver24, Prop. 3.11])

Let Φ : X → Y be a CP morphism. Then R(Φ ◦ Φ†) : Y → Y is a
quantum graph. It is a confusability graph iff Φ is a channel.

• We recover the quantum confusability graphs of channels
defined in [DSW13].

• Alternatively, one can work with the simple complement,
called the distinguishability graph [Sta16].



A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

The confusability graph of a channel
In classical zero-error communication, we often need even less
information than the underlying relation [Sha56]:

→

Proposition ([Ver24, Prop. 3.11])

Let Φ : X → Y be a CP morphism. Then R(Φ ◦ Φ†) : Y → Y is a
quantum graph. It is a confusability graph iff Φ is a channel.

• We recover the quantum confusability graphs of channels
defined in [DSW13].

• Alternatively, one can work with the simple complement,
called the distinguishability graph [Sta16].



A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

The confusability graph of a channel
In classical zero-error communication, we often need even less
information than the underlying relation [Sha56]:

→

Proposition ([Ver24, Prop. 3.11])

Let Φ : X → Y be a CP morphism. Then R(Φ ◦ Φ†) : Y → Y is a
quantum graph. It is a confusability graph iff Φ is a channel.

• We recover the quantum confusability graphs of channels
defined in [DSW13].

• Alternatively, one can work with the simple complement,
called the distinguishability graph [Sta16].



A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

The confusability graph of a channel
In classical zero-error communication, we often need even less
information than the underlying relation [Sha56]:

→

Proposition ([Ver24, Prop. 3.11])

Let Φ : X → Y be a CP morphism. Then R(Φ ◦ Φ†) : Y → Y is a
quantum graph. It is a confusability graph iff Φ is a channel.

• We recover the quantum confusability graphs of channels
defined in [DSW13].

• Alternatively, one can work with the simple complement,
called the distinguishability graph [Sta16].



A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

Duan’s theorem
Theorem ([Ver24, Prop. 3.12], c.f.[Dua09, Lem. 2])

Let Γ : Y → Y be a confusability graph. Then there exists a
channel Φ : X → Y such that R(Φ ◦ Φ†) = Γ.

Proof.
• ∆̃Y < Γ̃ ⇒ Γ̃ = ∆̃Y + (Γ̃− ∆̃Y ). The summands are
orthogonal projections; moreover they are symmetric.

• We use the Q-system version of Choi’s theorem:

=

• We get an equality of CP maps Γ = ∆Y + (Γ−∆Y ), where
the summands are self-adjoint CP maps Y → Y .
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Duan’s theorem

• We were considering the equality of CP maps
Γ = ∆Y + (Γ−∆Y ).

• We have the following concrete expression for ∆Y :

∆̃Y = → ∆Y =

• We observe that ∆Y is a positive invertible operator in
End(Y ⊗ Y ∗).

• Therefore for small enough τ > 0, the CP map
f := ∆Y + τ(Γ−∆Y ) is positive.

• We now go back to the Choi space and consider the positive
operator f̃ = ∆̃Y + τ(Γ̃− ∆̃Y ) ∈ End(Y ∗ ⊗ Y ).
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Duan’s theorem

• We were considering the positive operator
f̃ = ∆̃Y + τ(Γ̃− ∆̃Y ) ∈ End(Y ∗ ⊗ Y ).

• Fact 1: Positivity of f implies that f̃ is CP, in the sense that it
has a dilation η : X ∗ → X ∗ ⊗ E :

=

• Fact 2: f̃ is furthermore a channel:

= + τ =

• Fact 3: s(f̃ ) = s(∆̃Y + τ(Γ̃− ∆̃Y )) = s(Γ̃) = Γ̃.
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• We were discussing the positive operator f̃ ∈ End(Y ∗ ⊗ Y ).
It has a dilation η : Y ∗ → Y ∗ ⊗ E .

• We define the following CP map Φ : E ∗ → Y :

• Φ is a channel:

= = =

• We will finish by showing that its quantum confusability graph
is Γ.
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Duan’s theorem

• We just defined a channel Φ : E ∗ → Y :

• We have

˜R(Φ ◦ Φ†) = s



 = s(f̃ † ◦ f̃ ) = s(f̃ ) = Γ̃.
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More on quantum relations and zero error communication

Theorem (Reversibility of channels)

[[Ver24, Thm. 4.4]] Let Φ : Y → X be a channel. There exists a
channel Ψ : X → Y such that Φ ◦Ψ = idX iff the confusability
graph of Φ is discrete.

To state the following theorem we needed T to be a braided tensor
category to obtain a tensor product of T -systems.

Theorem (Source channel coding)

[[Ver24, Thm. 5.3], c.f. [Sta16])] A covariant channel is a valid
encoding channel for a zero-error source-channel coding scheme
precisely when it is a homomorphism from the confusability graph
of the source to the confusability graph of the communication
channel.
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Symmetry

• W ∗-tensor category T , no longer rigid.

• In the ‘compact quantum’ setting T should be the unitary
ind-category of a rigid W ∗-tensor category [NY16][JP17].

• More generally, category of unitary representations of a locally
compact quantum group?



A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

Symmetry

• W ∗-tensor category T , no longer rigid.

• In the ‘compact quantum’ setting T should be the unitary
ind-category of a rigid W ∗-tensor category [NY16][JP17].

• More generally, category of unitary representations of a locally
compact quantum group?



A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

Symmetry

• W ∗-tensor category T , no longer rigid.

• In the ‘compact quantum’ setting T should be the unitary
ind-category of a rigid W ∗-tensor category [NY16][JP17].

• More generally, category of unitary representations of a locally
compact quantum group?



A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

Free cocompletion

• Cocomp : W ∗-tensor category T → W ∗-2-category Mod(T ),
defined as follows:

• Objects: Left T -module W ∗-categories M,N , . . . .
• 1-morphisms X ,Y , · · · : M → N : normal T -module functors.
• 2-morphisms f , g , · · · : X → Y : Bounded natural

transformations of T -module functors.

• More generally, Mod(C) = Hom(C,W∗Cat).
• If T ≃ Rep(G ) for CQG G then Mod(T ) is the equivariant
Morita 2-category:

• Objects: G -W ∗-algebras.
• 1-morphisms: G -equivariant correspondences/bimodules.
• 2-morphisms: G -equivariant bimodule maps.

W ∗-version basically shown in [DR25]. For hints towards
C ∗-version see [DCY13][Nes13].
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T -systems and dynamics

• Yoneda embedding works as in the finite-dimensional case.

• T -Morita classes are equivalence classes of objects, T -systems
are generating 1-morphisms T → M.

• Stinespring’s theorem should be provable:

Already proven for arbitrary W ∗-algebras without a
G -action [AV24].

• So dynamics again splits into vertical and horizontal levels.
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The lack of rigidity
• Interpret 1-morphisms as abstract quantum relations,
following [Wea12].

• If the category Mod(T ) has a conjugate we can define a
quantum relation X → Y as a projection in X ⊗ Y .

• Unfortunately, for the underlying relation of a CP map we use
Choi’s theorem:

• This depends on rigidity, and therefore so does our subsequent
analysis.
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Thanks for listening!



A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

References I

Robert Allen and Dominic Verdon.
CP∞ and beyond: 2-categorical dilation theory.
Theory and Applications of Categories, 41(50), 2024.
arXiv:2310.15776.

Bob Coecke and Chris Heunen.
Pictures of complete positivity in arbitrary dimension.
Information and Computation, 250:50–58, 2016.
arXiv:1110.3055, doi:10.1016/j.ic.2016.02.007.

Quan Chen, Roberto Hernández Palomares, Corey Jones, and
David Penneys.
Q-system completion for C* 2-categories.
Journal of Functional Analysis, 283(3), 2022.
arXiv:2105.12010.

https://arxiv.org/abs/2310.15776
https://arxiv.org/abs/1110.3055
https://doi.org/10.1016/j.ic.2016.02.007
https://arxiv.org/abs/2105.12010


A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

References II

Kenny De Commer and Makoto Yamashita.
Tannaka-Krein duality for compact quantum homogeneous
spaces. I. general theory.
Theory and Applications of Categories, 28(31):1099–1138,
2013.
arXiv:1211.6552.

Christopher Douglas and David Reutter.
Fusion 2-categories and a state-sum invariant for 4-manifolds.
2018.
arXiv:1812.11933.

https://arxiv.org/abs/1211.6552
https://arxiv.org/abs/1812.11933


A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

References III

Joeri De Ro.
A categorical interpretation of Morita equivalence for
dynamical von Neumann algebras.
Journal of Algebra, 666:673–702, 2025.
arXiv:2408.07701,
doi:10.1016/j.jalgebra.2024.12.008.

R. Duan, S. Severini, and A. Winter.
Zero-error communication via quantum channels,
noncommutative graphs, and a quantum Lovász number.
IEEE Transactions on Information Theory, 59(2):1164–1174,
2013.
arXiv:1002.2514, doi:10.1109/TIT.2012.2221677.

https://arxiv.org/abs/2408.07701
https://doi.org/10.1016/j.jalgebra.2024.12.008
https://arxiv.org/abs/1002.2514
https://doi.org/10.1109/TIT.2012.2221677


A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

References IV

Runyao Duan.
Super-activation of zero-error capacity of noisy quantum
channels.
2009.
arXiv:0906.2527.

Corey Jones and David Penneys.
Operator algebras in rigid C*-tensor categories.
Commun. Math. Phys., 355:1121–1188, 2017.
arXiv:1611.04620, doi:10.1007/s00220-017-2964-0.

Andre Kornell.
Quantum sets.
J. Math. Phys., 61(10), 2020.
arXiv:1804.00581, doi:10.1063/1.5054128.

https://arxiv.org/abs/0906.2527
https://arxiv.org/abs/1611.04620
https://doi.org/10.1007/s00220-017-2964-0
https://arxiv.org/abs/1804.00581
https://doi.org/10.1063/1.5054128


A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

References V

Sergey Neshveyev.
Duality theory for nonergodic actions.
2013.
arXiv:1303.6207.

Sergey Neshveyev and Makoto Yamashita.
Drinfeld center and representation theory for monoidal
categories.
Commun. Math. Phys., 345:385–434, 2016.
arXiv:1501.07390, doi:10.1007/s00220-016-2642-7.

Peter Selinger.
Dagger compact closed categories and completely positive
maps: (extended abstract).
Electronic Notes in Theoretical Computer Science,
170:139–163, 2007.

https://arxiv.org/abs/1303.6207
https://arxiv.org/abs/1501.07390
https://doi.org/10.1007/s00220-016-2642-7


A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

References VI

URL: https:
//www.mscs.dal.ca/~selinger/papers/dagger.pdf.

C. Shannon.
The zero error capacity of a noisy channel.
IRE Transactions on Information Theory, 2(3):8–19, 1956.
doi:10.1109/TIT.1956.1056798.

Dan Stahlke.
Quantum zero-error source-channel coding and
non-commutative graph theory.
IEEE Transactions on Information Theory, 62(1), 2016.
arXiv:1405.5254, doi:10.1109/TIT.2015.2496377.

https://www.mscs.dal.ca/~selinger/papers/dagger.pdf
https://www.mscs.dal.ca/~selinger/papers/dagger.pdf
https://doi.org/10.1109/TIT.1956.1056798
https://arxiv.org/abs/1405.5254
https://doi.org/10.1109/TIT.2015.2496377


A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

References VII

Dominic Verdon.
A covariant Stinespring theorem.
Journal of Mathematical Physics, 63(9):091705, 09 2022.
arXiv:2108.09872, doi:10.1063/5.0071215.

Dominic Verdon.
Covariant quantum combinatorics with applications to zero
error communication.
Commun. Math. Phys., 405(51), 2024.
arXiv:2302.07776, doi:10.1007/s00220-023-04898-0.

Nik Weaver.
Quantum relations.
Mem. Amer. Math. Soc., 215(v-vi):81–140, 2012.
arXiv:1506.03892.

https://arxiv.org/abs/2108.09872
https://doi.org/10.1063/5.0071215
https://arxiv.org/abs/2302.07776
https://doi.org/10.1007/s00220-023-04898-0
https://arxiv.org/abs/1506.03892


A primer on 2-categories Categorical quantum mechanics Quantum relations Underlying relations Quantum graphs Infinite dimension: outlook

References VIII

Nik Weaver.
Quantum graphs as quantum relations.
J Geom Anal, 31:9090–9112, 2021.
arXiv:1506.03892, doi:10.1007/s12220-020-00578-w.

https://arxiv.org/abs/1506.03892
https://doi.org/10.1007/s12220-020-00578-w

	A primer on 2-categories
	Categorical quantum mechanics
	Quantum relations
	Underlying relations
	Quantum graphs
	Infinite dimension: outlook

