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f : A— B between finite-dimensional (f.d.) C*-algebras a
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Channels

We will call a completely positive trace-preserving map
f : A— B between finite-dimensional (f.d.) C*-algebras a
channel.

This is the standard notion of a dynamical map in quantum
information theory.

Channels B(H) — B(K) between algebras of operators on f.d.
Hilbert spaces are known as quantum-to-quantum channels.

Channels B(H) — C®" are called quantum-to-classical
channels, or POVMs (positive operator valued
measurements). They are determined by a family of positive
operators {M; € B(H)}icqa,..n}-

Channels C®" — B(H) are called classical-to-quantum
channels. They are determined by a family of states

{pi € B(H)}ieq1,...n}-
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Entanglement-assisted channel coding

® Alice and Bob share a communication channel N : A — B and
a maximally entangled state W : C — B(V) ® B(V).
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Entanglement-assisted channel coding

® Alice and Bob share a communication channel N : A — B and
a maximally entangled state W : C — B(V) ® B(V).

® They want to communicate through a channel T : X — Y.
® To achieve this, Alice performs an encoding channel
E : X ® B(V) — A using her half of the entangled state, and

transmits the resulting state of A using the channel
N:A— B.
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using his half of the entangled state.
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Entanglement-assisted channel coding

Alice and Bob share a communication channel N : A — B and
a maximally entangled state W : C — B(V) ® B(V).

They want to communicate through a channel T : X — Y.

To achieve this, Alice performs an encoding channel

E : X ® B(V) — A using her half of the entangled state, and
transmits the resulting state of A using the channel

N:A— B.

Bob then performs a decoding channel D: B® B(V) — Y
using his half of the entangled state.

We say that (E, D, V) is an entanglement-assisted channel
coding scheme for T from N if the resulting channel

Do(N® 1dB(V)) o(E® 1dB(V)) o(idxy@V¥): X =Y

from Alice to Bob is equal to T.
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Entanglement-equivalent channels

® The relation

(Nl 2A1 — Bl) > (N2 : A2 — Bg)
iff there exists an entanglement — assisted channel

coding scheme for N from N;

defines a partial order on channels.
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under this partial order; that is, channels which can simulate
each other using an entangled resource. We call such channels
entanglement-equivalent.
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Entanglement-equivalent channels

® The relation

(Nl 2A1 — Bl) > (N2 : A2 — Bz)
iff there exists an entanglement — assisted channel

coding scheme for N from N;

defines a partial order on channels.

® We are interested in classes of channels that are equivalent
under this partial order; that is, channels which can simulate
each other using an entangled resource. We call such channels
entanglement-equivalent.

® For a similar problem without entanglement, see M.B.
Hastings, ‘Infinitely many kinds of quantum channels’ (2008).
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(called ‘covariance’), we will present a construction of other
channels which are entanglement-equivalent to it.
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Our results

Given a channel that possesses some symmetry properties
(called ‘covariance’), we will present a construction of other
channels which are entanglement-equivalent to it.

This construction does not solve the problem of determining
whether a pair of channels are entanglement-equivalent.
However, it represents a first step in this direction.

As a first application, we will show how the construction can

be used to compute the entanglement-assisted capacities of
certain quantum channels.
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Covariance for channels

® (Covariance is the standard way to define what we mean when
we say that a channel possesses some symmetry.



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion
00000 Oe0000 000000 00000000000 00000000 0000000

Covariance for channels

® (Covariance is the standard way to define what we mean when
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Covariance for channels

Covariance is the standard way to define what we mean when
we say that a channel possesses some symmetry.

Let us fix a compact symmetry group G.

Suppose we have two f.d. C*-algebras A, B, respectively
carrying actions of G; that is, continuous group
homomorphisms

A G — Aut(A) g : G — Aut(B).

We say that a channel f : A — B is covariant for these
actions when:

mg(g)of =foma(g) forall g € G
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From groups to Hopf algebras

® Using the duality between topological spaces and algebras of
continuous functions on those spaces, we can exchange the
compact group G for a certain Hopf *-algebra C[G].
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® Using the duality between topological spaces and algebras of
continuous functions on those spaces, we can exchange the
compact group G for a certain Hopf x-algebra C[G].

® This is a commutative unital *-algebra equipped with a unital
x-homomorphism

A : C[G] — C[G] ® C[G]
(the comultiplication) and two linear maps
e:C[G] = C S : C[G] — C[G]

which we call the counit and antipode respectively. This data
satisfies certain equations.
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From groups to Hopf algebras

Using the duality between topological spaces and algebras of
continuous functions on those spaces, we can exchange the
compact group G for a certain Hopf x-algebra C[G].

This is a commutative unital *-algebra equipped with a unital
x-homomorphism

A : C[G] — C[G] ® C[G]
(the comultiplication) and two linear maps
e:C[G] = C S : C[G] — C[G]

which we call the counit and antipode respectively. This data
satisfies certain equations.

It is a subalgebra of the algebra C(G) of all continuous
complex-valued functions on the compact group G.
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The Hopf-algebraic formulation of covariance

® Actions of the group G on a f.d. C*-algebra A correspond to
coactions of the Hopf %-algebra C[G] on A.
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The Hopf-algebraic formulation of covariance

® Actions of the group G on a f.d. C*-algebra A correspond to
coactions of the Hopf %-algebra C[G] on A.

® These are unital *-homomorphisms oo : A — A® C[G]
satisfying certain equations.
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The Hopf-algebraic formulation of covariance

® Actions of the group G on a f.d. C*-algebra A correspond to
coactions of the Hopf %-algebra C[G] on A.

® These are unital x-homomorphisms o : A - A ® C[G]
satisfying certain equations.

® With respect to coactions a4, ag on f.d. C*-algebras A, B,
covariance of a channel f : A — B comes down to the
following equation:

(f®id(c[g]) oap=agof
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Compact quantum group algebras

® \We generalise from commutative to possibly noncommutative
Hopf *-algebras.
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e We will call a Hopf x-algebra (obeying a minor technical
condition) a compact quantum group algebra. It can be
thought of as an algebra of continuous functions on a
‘compact quantum group’.
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isomorphic to C[G] for some compact group G.
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Coactions on f.d. C*-algebras and covariance of channels can
be defined just as in the commutative case.
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Compact quantum group algebras

We generalise from commutative to possibly noncommutative
Hopf *-algebras.

We will call a Hopf *-algebra (obeying a minor technical
condition) a compact quantum group algebra. It can be
thought of as an algebra of continuous functions on a
‘compact quantum group’.

Any commutative compact quantum group algebras is
isomorphic to C[G] for some compact group G.

Coactions on f.d. C*-algebras and covariance of channels can
be defined just as in the commutative case.

This generalisation is necessary! We shall see why shortly.
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® Recall that a category C is defined by the following data:
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The category of covariant channels

® Recall that a category C is defined by the following data:
® A set of objects X, Y,....
® For every ordered pair of objects (X, Y), a set of morphisms
Hom(X, Y). (These can be thought of as ‘arrows’ between the
objects, where X is the source and Y is the target.)
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® Recall that a category C is defined by the following data:

® A set of objects X, Y,....

® For every ordered pair of objects (X, Y), a set of morphisms
Hom(X, Y). (These can be thought of as ‘arrows’ between the
objects, where X is the source and Y is the target.)

® Morphisms with compatible source and target can be
composed; i.e. for f : X = Y and g : Y — Z we can define
gof: X —Z.
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® Morphisms with compatible source and target can be
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® This data must obey the following conditions:

® Every object X possesses an identity morphism idx : X — X.
Composing with an identity morphism does nothing.
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The category of covariant channels

® Recall that a category C is defined by the following data:
® A set of objects X, Y,....
® For every ordered pair of objects (X, Y), a set of morphisms
Hom(X, Y). (These can be thought of as ‘arrows’ between the
objects, where X is the source and Y is the target.)
® Morphisms with compatible source and target can be
composed; i.e. for f : X = Y and g : Y — Z we can define
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Composing with an identity morphism does nothing.

® Composition of morphisms is associative:
(hog)of=ho(gof).
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objects, where X is the source and Y is the target.)

® Morphisms with compatible source and target can be
composed; i.e. for f : X = Y and g : Y — Z we can define
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The category of covariant channels

® Recall that a category C is defined by the following data:

® A set of objects X, Y,....
® For every ordered pair of objects (X, Y), a set of morphisms
Hom(X, Y). (These can be thought of as ‘arrows’ between the
objects, where X is the source and Y is the target.)
® Morphisms with compatible source and target can be
composed; i.e. for f : X = Y and g : Y — Z we can define
gof: X —Z.
® This data must obey the following conditions:
® Every object X possesses an identity morphism idx : X — X.
Composing with an identity morphism does nothing.
® Composition of morphisms is associative:
(hog)of=ho(gof).
® For any compact quantum group algebra H there is a category
Chan(H) where:
® QObjects are f.d. C*-algebras equipped with an H-coaction.
® Morphisms are covariant channels.
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Hopf-Galois objects

® |l et H be a compact quantum group algebra.
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® |l et H be a compact quantum group algebra.

® Associated to H are certain Hopf-Galois objects, which can be
thought of as ‘noncommutative torsors’ for the compact
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Hopf-Galois objects

® |l et H be a compact quantum group algebra.

® Associated to H are certain Hopf-Galois objects, which can be
thought of as ‘noncommutative torsors’ for the compact
quantum group.

® These Hopf-Galois objects are unital *-algebras X, Y, ...
equipped with unital *-homomorphisms o : X — X ® H,
satisfying certain equations.
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From Hopf-Galois objects to functors

Recall that a functor F : C — D between categories is a map from
objects to objects and morphisms to morphisms that
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From Hopf-Galois objects to functors

Recall that a functor F : C — D between categories is a map from
objects to objects and morphisms to morphisms that

® is compatible with composition: for morphisms f : X — Y

and g: Y — Zin C, we have
F(g)o F(f)=F(gof): F(X)— F(2).
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F(g)o F(f)=F(gof): F(X)— F(2).
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From Hopf-Galois objects to functors

Recall that a functor F : C — D between categories is a map from
objects to objects and morphisms to morphisms that

® is compatible with composition: for morphisms f : X — Y
and g: Y — Zin C, we have
F(g)oF(f)=F(gof): F(X)— F(2).

® respects identities: F(idx) = idf(x)-
Lemma

Let H be a compact quantum group algebra and let X be a
Hopf-Galois object for H. Then we obtain
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From Hopf-Galois objects to functors

Recall that a functor F : C — D between categories is a map from
objects to objects and morphisms to morphisms that

® is compatible with composition: for morphisms f : X — Y
and g: Y — Zin C, we have
F(g)oF(f)=F(gof): F(X)— F(2).

® respects identities: F(idx) = idf(x)-

Lemma
Let H be a compact quantum group algebra and let X be a
Hopf-Galois object for H. Then we obtain

® A new compact quantum group algebra HX. (Note that even
if H was commutative HX need not be commutative; this was
why we needed to generalise to compact quantum groups.)
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From Hopf-Galois objects to functors

Recall that a functor F : C — D between categories is a map from
objects to objects and morphisms to morphisms that

® is compatible with composition: for morphisms f : X — Y
and g: Y — Zin C, we have
F(g)o F(f)=F(gof): F(X)— F(2).

® respects identities: F(idx) = idf(x)-

Lemma

Let H be a compact quantum group algebra and let X be a
Hopf-Galois object for H. Then we obtain

® A new compact quantum group algebra HX. (Note that even

if H was commutative HX need not be commutative; this was
why we needed to generalise to compact quantum groups.)

® A functor Fx : Chan(H) — Chan(HX).
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Entanglement-symmetries: |

Let W : C — B(V)® B(V) be the channel initialising a maximally
entangled state.
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Entanglement-symmetries: |

Let W : C — B(V)® B(V) be the channel initialising a maximally
entangled state.

Theorem

Let H be a compact quantum group algebra, let X be a
Hopf-Galois object for H, and let w: X — B(V') be a
x-representation of X on a f.d. Hilbert space V.
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Entanglement-symmetries: |

Let W : C — B(V)® B(V) be the channel initialising a maximally
entangled state.

Theorem

Let H be a compact quantum group algebra, let X be a
Hopf-Galois object for H, and let w: X — B(V') be a
x-representation of X on a f.d. Hilbert space V. Then for every
object A of Chan(H) we obtain a pair of channels

ua: A® B(V) — Fx(A) va: Fx(A)®@ B(V) — A
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Entanglement-symmetries: |l

Theorem (Continued)

For every H-covariant channel f : A — B, the following equations
are obeyed:

Fx(B)

Fx(A)
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Entanglement-symmetries of covariant channels

® We call these transformations arising from f.d.
x-representations of Hopf-Galois objects
entanglement-symmetries of covariant channels.
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Entanglement-symmetries of covariant channels

® We call these transformations arising from f.d.
x-representations of Hopf-Galois objects
entanglement-symmetries of covariant channels.

® They are symmetries, not of a single covariant channel alone,
but of the whole category Chan(H).
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Entanglement-symmetries of covariant channels

® We call these transformations arising from f.d.
x-representations of Hopf-Galois objects
entanglement-symmetries of covariant channels.

® They are symmetries, not of a single covariant channel alone,
but of the whole category Chan(H).
® We observe in particular that for
® any H-covariant channel f : A — B
® and any Hopf-Galois object X for H with a f.d.
*-representation
the HX-covariant channel Fx(f) : Fx(A) — Fx(B) is
entanglement-equivalent to f.
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® |Let G be any finite group.
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Twisted group algebras

® |Let G be any finite group.

® We will consider a class of f.d. C*-algebras called twisted
group algebras A(L, ¢).
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Twisted group algebras

® |Let G be any finite group.

® We will consider a class of f.d. C*-algebras called twisted
group algebras A(L, ¢).These are defined by:

® A subgroup L < G.
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Twisted group algebras

® |Let G be any finite group.
® We will consider a class of f.d. C*-algebras called twisted
group algebras A(L, ¢).These are defined by:

® A subgroup L < G.
* A 2-cocycle ¢ € Z3(L, U(1)).

Conclusion
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Twisted group algebras

® |Let G be any finite group.

® We will consider a class of f.d. C*-algebras called twisted
group algebras A(L, ¢).These are defined by:

® A subgroup L < G.
* A 2-cocycle ¢ € Z3(L, U(1)).
® They have a basis {ug | g € L}, which is orthogonal w.r.t. the
Hilbert-Schmidt inner product.
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group algebras A(L, ¢).These are defined by:

® A subgroup L < G.

* A 2-cocycle ¢ € Z3(L, U(1)).
They have a basis {ug | g € L}, which is orthogonal w.r.t. the
Hilbert-Schmidt inner product.
The multiplication, unit and involution are defined as follows:
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Let G be any finite group.

We will consider a class of f.d. C*-algebras called twisted
group algebras A(L, ¢).These are defined by:

® A subgroup L < G.
® A 2-cocycle ¢ € Z?(L, U(1)).
They have a basis {ug | g € L}, which is orthogonal w.r.t. the
Hilbert-Schmidt inner product.
The multiplication, unit and involution are defined as follows:
® Multiplication: ug - up := ¢(g, h)ugn.
® Unit: we.

° ion: i =
Involution: ugp = Ug-1.
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Twisted group algebras

Let G be any finite group.

We will consider a class of f.d. C*-algebras called twisted
group algebras A(L, ¢).These are defined by:
® A subgroup L < G.
® A 2-cocycle ¢ € Z?(L, U(1)).
They have a basis {ug | g € L}, which is orthogonal w.r.t. the
Hilbert-Schmidt inner product.
The multiplication, unit and involution are defined as follows:
® Multiplication: ug - up := ¢(g, h)ugn.
® Unit: we.
® |nvolution: u; = Uga.
We call a channel f : A(L1, ¢1) — A(L2, ¢2) between these
twisted group algebras covariant if f(ug) = Agug, for

{)\g 6 (C}ge[_l.
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Hopf-Galois objects

® Twisted group algebras, and covariant channels between them,
are part of Chan(H) for a compact quantum group algebra H.
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® Hopf-Galois objects for H correspond to 2-cohomology classes

[v] € H*(G, U(1)).
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Hopf-Galois objects

Twisted group algebras, and covariant channels between them,
are part of Chan(H) for a compact quantum group algebra H.

Hopf-Galois objects for H correspond to 2-cohomology classes
[¥] € H*(G, U(1)).

The new compact quantum group algebra corresponding to
any Hopf-Galois object is just H again.

The functor Fpy) : Chan(H) — Chan(H) maps A(L, ¢) to
A(L ¥9).

Covariant channels between twisted group algebras are left
unchanged as maps between the underlying vector spaces.

However, since Fy) ‘twists’ the source and target algebras it
will act nontrivially on covariant channels.
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Two very concrete examples

e We fix G :=Zy X Zy.
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e We fix G :=Zy X Zy.

® We consider two twisted group algebras for G:
* A(G,1) = C%

* A(G,¢p) = B(C?), where ¢p is the 2-cocycle arising from
multiplication of Pauli matrices.
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e We fix G :=Zy X Zy.
® We consider two twisted group algebras for G:
* A(G,1) = C%

* A(G,¢p) = B(C?), where ¢p is the 2-cocycle arising from

multiplication of Pauli matrices.
® We will exhibit entanglement-symmetries relating

® Quantum-to-quantum channels A(G, ¢p) — A(G, ¢p) with

classical-to-classical channels A(G,1) — A(G,1).

00000 000®0000000  OOOOO00O

Conclusion



Examples
000®0000000

Two very concrete examples

e We fix G :=Zy X Zy.
® We consider two twisted group algebras for G:
* A(G,1) = C%
* A(G,¢p) = B(C?), where ¢p is the 2-cocycle arising from
multiplication of Pauli matrices.
® We will exhibit entanglement-symmetries relating
® Quantum-to-quantum channels A(G, ¢p) — A(G, ¢p) with
classical-to-classical channels A(G,1) — A(G,1).
® Quantum-to-classical channels A(G, ¢p) — A(G, 1) with
classical-to-quantum channels A(G,1) — A(G, ¢p).



Examples
000®0000000

Two very concrete examples

e We fix G :=Zy X Zy.
® We consider two twisted group algebras for G:
* A(G,1) = C%
* A(G,¢p) = B(C?), where ¢p is the 2-cocycle arising from
multiplication of Pauli matrices.
® We will exhibit entanglement-symmetries relating
® Quantum-to-quantum channels A(G, ¢p) — A(G, ¢p) with
classical-to-classical channels A(G,1) — A(G,1).
® Quantum-to-classical channels A(G, ¢p) — A(G, 1) with
classical-to-quantum channels A(G,1) — A(G, ¢p).



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion
00000 000000 000000 0000e000000 00000000 0000000

Covariant channels A(G,1) — A(G,1)

e Covariant channels A(G,1) — A(G, 1) are weakly symmetric
classical channels with 4 possible inputs and 4 possible
outputs.



Examples
0000@000000

Covariant channels A(G,1) — A(G,1)

e Covariant channels A(G,1) — A(G, 1) are weakly symmetric
classical channels with 4 possible inputs and 4 possible

outputs.

® They are defined by a stochastic matrix
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and are therefore determined by a probability distribution

(P11, P12, P13, P14).
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Covariant channels A(G,1) — A(G,1)

e Covariant channels A(G,1) — A(G, 1) are weakly symmetric
classical channels with 4 possible inputs and 4 possible

outputs.

® They are defined by a stochastic matrix

P11
P12
P13
P14

P12
P11
P14
P13

P13
P14
P11
P12

P14
P13
P12
P11

and are therefore determined by a probability distribution

(P11, P12, P13, P14).

® The classical capacity of one of these channels is

C =2 — H({p11, p12, P13, P14})-
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Covariant channels A(G, ¢p) — A(G, ¢p)

® Recall that A(G, ¢p) = B(C?). Recall also the definition of
the Pauli matrices

=1 x=(0) v-( %) 26 5
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Covariant channels A(G, ¢p) — A(G, ¢p)

® Recall that A(G, ¢p) = B(C?). Recall also the definition of
the Pauli matrices

10 01 0 —i 1 0
=3 =G0 -0 9) 26 )
® A covariant channel f : A(G,¢p) — A(G, ¢p) is defined by
f(h=1 fX)=MX Ff(Y)=XvY f(Z)=XzZ

where Ax, Ay, Az € [—1,1] obey the equations

Ax — Ay + Az <1 Ax + Ay — Az <1
—“Ax +FAy+2z <1 Ax+Ay + Az > -1
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Covariant channels A(G, ¢p) — A(G, ¢p)

® Recall that A(G, ¢p) = B(C?). Recall also the definition of
the Pauli matrices

=1 x=(0) v-( %) 26 5

® A covariant channel f : A(G, ¢p) — A(G, ¢p) is defined by
F) =1 Ff(X)= X FfY)=\yY F£(Z)=A\zZ
where Ax, Ay, Az € [—1,1] obey the equations

Ax — Ay + Az <1 Ax + Ay — Az <1
—“Ax +FAy+2z <1 Ax+Ay + Az > -1

® These channels scale the Bloch sphere along the X, Y and
Z-axes.
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The entanglement-symmetry

¢ Covariant channels A(G, ¢pp) — A(G, ¢p) are related to
covariant channels A(G,1) — A(G, 1) by the Hopf-Galois
object [pp] € H?(G, U(1)).

Conclusion
0000000
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The entanglement-symmetry

¢ Covariant channels A(G, ¢pp) — A(G, ¢p) are related to
covariant channels A(G,1) — A(G, 1) by the Hopf-Galois
object [pp] € H?(G, U(1)).

® This entanglement symmetry maps

PIIZ%(1+Ax+)\y+>\2)
pi2 = z(1+Ax — Ay — A7)
Ax. Ay, Az) 3
(Ax; Ay, Az) p13:%(1_,\x+)\y_ A7)
p1a = 7(1 = Ax — Ay + A7)
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The entanglement-symmetry

¢ Covariant channels A(G, ¢pp) — A(G, ¢p) are related to
covariant channels A(G,1) — A(G, 1) by the Hopf-Galois
object [pp] € H?(G, U(1)).

® This entanglement symmetry maps

PIIZ%(1+Ax+)\y+)\2)
pi2 = z(1+Ax — Ay — A7)
Ax. Ay, Az) 3
(Ax; Ay, Az) p13:%(1_,\x+)\y_)\z)
p1a = 7(1 = Ax — Ay + A7)

® The entanglement-assisted classical capacity of a covariant
channel A(G, ¢p) — A(G, ¢p) can therefore be
straightforwardly calculated by determining the entropy of the
associated probability distribution.
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Covariant channels A(G, ¢p) — A(G, 1)

e Covariant channels B(C?) = A(G, ¢p) — A(G,1) =2 C®* are
4-outcome POVMs on a qubit, defined by positive operators

1

M, = Z(I + AxX + )\yY—i-)\zz)
1

My = Z(I + AxX = AyY — )\ZZ)
1

My = Z(I —AxX +AyY — )\ZZ)

1
Mz = Z(I — AxX — )\yY—i-)\zz)
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Covariant channels A(G, ¢p) — A(G, 1)

e Covariant channels B(C?) = A(G, ¢p) — A(G,1) =2 C®* are
4-outcome POVMs on a qubit, defined by positive operators

M = %(/ + M X+ AyY +2z7)
My = %(IJF)\XX—/\YY—)\ZZ)
My = %(I—)\XXJr)\yY—)\ZZ)
Mgz = %(I—AXX—)\yYJr)\ZZ)

® These POVMs are determined by X = (Ax; Ay, Az) € R3,
where |\| < 1.
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Covariant channels A(G,1) — A(G, ¢p)

e Covariant channels C®* = A(G,1) — A(G, ¢p) = B(C?) are
classical-to-quantum channels defined by four density matrices

1
pl = E(I —|—>\XX+)\yY—|—>\ZZ)

1

pPxX = E(I +AxX —AyY — )\ZZ)
1

py = 5= AxX +AvY = Az2)

1
pz = E(I — AxX — )\yY+>\Zz)
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Covariant channels A(G,1) — A(G, ¢p)

e Covariant channels C®* = A(G,1) — A(G, ¢p) = B(C?) are
classical-to-quantum channels defined by four density matrices

1
pl = E(I —|—>\XX+)\yY—|—>\ZZ)

1

pPxX = E(I +AxX —AyY — )\ZZ)
1

py = 501 = X +AyY = Az2)
1

pz = E(I — AxX — )\yY—|—>\22)

® These classical-to-quantum channels are determined by
A= (Ax, Ay, Az) € R3, where [A| < 1.
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The entanglement-symmetry

® Covariant channels A(G, ¢p A(G,1) are related to
covariant channels A(G,1) — ( , ®p) by the Hopf-Galois
object [3p] € H2(G, U(1)).
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The entanglement-symmetry

e Covariant channels A(G, ¢p) — A(G, 1) are related to
covariant channels A(G,1) — A(G, ¢p) by the Hopf-Galois
object [¢p] € H?(G, U(1)).

® This entanglement symmetry maps a point on the Bloch
sphere to the opposite point:

(Ax; Ay, Az) = (= Ax, = Ay, —Az)
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The entanglement-symmetry

e Covariant channels A(G, ¢p) — A(G, 1) are related to
covariant channels A(G,1) — A(G, ¢p) by the Hopf-Galois
object [¢p] € H?(G, U(1)).

® This entanglement symmetry maps a point on the Bloch
sphere to the opposite point:

(Ax; Ay, Az) = (= Ax, = Ay, —Az)

® \We see that classical-to-quantum channels and
quantum-to-classical channels can be equivalent
communication resources in the entanglement-assisted setting.
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Future examples

® The construction we have seen so far extends beyond twisted
group algebras to any G-graded f.d. C*-algebra.
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channels, such as uniform noise f : B(C?)®" — B(C?)®", i.e.
where f is covariant under the permutation action of S, on
the n qubits.
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Future examples

The construction we have seen so far extends beyond twisted
group algebras to any G-graded f.d. C*-algebra.

These are not the only entanglement-symmetries coming from
finite groups — rather than G-gradings we can consider
actions of G, just as we defined for compact groups earlier.

In that case Hopf-Galois objects correspond to subgroups
L < G which are of central type. It is an interesting problem
to compute the corresponding functors.

Finite group actions cover natural examples of communication
channels, such as uniform noise f : B(C?)®" — B(C?)®", i.e.
where f is covariant under the permutation action of S, on
the n qubits.
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The tensor category Corep(H)

® For any compact quantum group algebra H we can define its
tensor category Corep(H) of f.d. unitary corepresentations.
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® For any compact quantum group algebra H we can define its
tensor category Corep(H) of f.d. unitary corepresentations.

® This should be thought of as the category of f.d. continuous
unitary representations of the associated compact quantum

group.
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The tensor category Corep(H)

® For any compact quantum group algebra H we can define its
tensor category Corep(H) of f.d. unitary corepresentations.

® This should be thought of as the category of f.d. continuous
unitary representations of the associated compact quantum
group.

® |t is a rigid C*-tensor category: in particular, it has

® A tensor product: for any corepresentations V', W we can
define the tensor product of corepresentations V ®@ W.
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The tensor category Corep(H)

® For any compact quantum group algebra H we can define its
tensor category Corep(H) of f.d. unitary corepresentations.

® This should be thought of as the category of f.d. continuous
unitary representations of the associated compact quantum
group.
® |t is a rigid C*-tensor category: in particular, it has
® A tensor product: for any corepresentations V', W we can
define the tensor product of corepresentations V @ W.
® A dagger given by the Hermitian adjoint: that is, for any

intertwiner of corepresentations f : V — W there is an adjoint
intertwiner ff: W — V.
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From coactions to Frobenius algebras

® An f.d. C*-algebra A with an H-coaction possesses a
canonical H-invariant linear functional ¢ : A — C, which we
call the separable linear functional.
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From coactions to Frobenius algebras

® An f.d. C*-algebra A with an H-coaction possesses a
canonical H-invariant linear functional ¢ : A — C, which we
call the separable linear functional.

® This linear functional defines an inner product
(x]y) := ¢(x*y) on A turning A into a unitary
H-corepresentation; that is, an object of Corep(H).
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® This object of Corep(H) is equipped with multiplication and
unit morphisms m: A® A — A and u: C — A satisfying the
equations shown on the next slide.
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canonical H-invariant linear functional ¢ : A — C, which we
call the separable linear functional.

This linear functional defines an inner product

(x]y) := ¢(x*y) on A turning A into a unitary
H-corepresentation; that is, an object of Corep(H).

This object of Corep(H) is equipped with multiplication and

unit morphisms m: A® A — A and u: C — A satisfying the
equations shown on the next slide.

We can thereby identify f.d. C*-algebras carrying an
H-coaction with separable standard Frobenius algebras
(SSFAs) in Corep(H).
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From coactions to Frobenius algebras

An f.d. C*-algebra A with an H-coaction possesses a
canonical H-invariant linear functional ¢ : A — C, which we
call the separable linear functional.

This linear functional defines an inner product

(x]y) := ¢(x*y) on A turning A into a unitary
H-corepresentation; that is, an object of Corep(H).

This object of Corep(H) is equipped with multiplication and
unit morphisms m: A® A — A and u: C — A satisfying the
equations shown on the next slide.

We can thereby identify f.d. C*-algebras carrying an

H-coaction with separable standard Frobenius algebras
(SSFAs) in Corep(H).

See S. Neshveyev and M. Yamashita, 'Categorically Morita
equivalent compact quantum groups’ (2018).
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The equations of a SSFA

forallf: A — A
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From channels to morphisms

e Covariant completely positive maps f : A — B correspond to
morphisms f : A — B between the corresponding SSFAs in
Corep(H) satisfying

for some intertwiner g : A® B - A® B. (C. Heunen and J.
Vicary, 'Categories for quantum theory’ (2019).)
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From channels to morphisms

e Covariant completely positive maps f : A — B correspond to
morphisms f : A — B between the corresponding SSFAs in
Corep(H) satisfying

A B

for some intertwiner g : A® B - A® B. (C. Heunen and J.
Vicary, 'Categories for quantum theory’ (2019).)

® The CP map f : A — B preserves the separable functional iff:
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A categorical approach to Hopf-Galois theory

® Hopf-Galois objects X for H correspond to functors
Fx : Corep(H) — Hilb preserving the tensor product and the
dagger. We call these fibre functors. (J. Bichon, ‘Galois
extension for a compact quantum group’' (1999).)
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® Hopf-Galois objects X for H correspond to functors
Fx : Corep(H) — Hilb preserving the tensor product and the
dagger. We call these fibre functors. (J. Bichon, ‘Galois
extension for a compact quantum group’' (1999).)

® There is a canonical fibre functor Fy : Corep(H) — Hilb,

taking a unitary corepresentation to its underlying Hilbert
space and an intertwiner to its underlying linear map.
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A categorical approach to Hopf-Galois theory

Hopf-Galois objects X for H correspond to functors

Fx : Corep(H) — Hilb preserving the tensor product and the
dagger. We call these fibre functors. (J. Bichon, ‘Galois
extension for a compact quantum group’' (1999).)

There is a canonical fibre functor Fy : Corep(H) — Hilb,
taking a unitary corepresentation to its underlying Hilbert
space and an intertwiner to its underlying linear map.

Finite-dimensional x-representations 7 : X — B(V/) of
Hopf-Galois objects correspond to unitary pseudonatural
transformations ur : Fy — Fx. (D. Verdon, ‘Unitary
transformations of fibre functors’ (2022).)
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From fibre functors to equivalences

Theorem (Tannaka-Krein-Woronowicz duality)

Let C be a rigid C*-tensor category. From any fibre functor
F : C — Hilb we obtain:

Conclusion
0000000
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From fibre functors to equivalences

Theorem (Tannaka-Krein-Woronowicz duality)

Let C be a rigid C*-tensor category. From any fibre functor
F : C — Hilb we obtain:

® A compact quantum group algebra H.

Conclusion
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From fibre functors to equivalences

Theorem (Tannaka-Krein-Woronowicz duality)

Let C be a rigid C*-tensor category. From any fibre functor
F : C — Hilb we obtain:

® A compact quantum group algebra H.

® An equivalence E : C — Corep(H) preserving the tensor
product and the dagger, and making the following diagram of
functors commute up to natural isomorphism:

C# Corep(H)
F Fcl
Hilb

(S. Neshveyev and L. Tuset, ‘Compact quantum groups and their
representation categories’ (2013), Thm. 2.3.2.)
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Obtaining the theorem

We just saw that Chan(H) can be expressed as a category of
SSFAs in Corep(H).

We also saw that Hopf-Galois objects X for H yield new
compact quantum group algebras HX and tensor-preserving
equivalences Fx : Corep(H) — Corep(HX).

These tensor-preserving equivalences map SSFAs to SSFAs
and channels to channels, yielding the induced equivalence
Fx : Chan(H) — Chan(HX).

The rest follows from the correspondence between f.d.
x-representations of Hopf-Galois objects and unitary
pseudonatural transformations of fibre functors.
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Review

® We raised the problem of classifying channels which are
entanglement-equivalent. Such channels are equally powerful
communication resources when the transmitter and receiver
share quantum entanglement.

® We showed that if a channel is covariant with respect to
actions of some compact (quantum) group G, then
Hopf-Galois objects for G can be used to construct
entanglement-equivalent channels.

® How does this relate to prior constructions?



Conclusion
00®0000

1ce of channels

annel coding C ment-symmetries E

An observation about our construction
® Note that the encoding and decoding channels
UAA®B(V)—>F)((A) VAFx(A)®B(V)—>A

arising from a Hopf-Galois object X obey the following
equations (because functors preserve identity morphisms):

A Fx(A)
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® |et's forget about the group theory and imagine we just have
a pair of channels

u:A® B(V) - B v:BB(V)— A

satisfying these equations:
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® |et's forget about the group theory and imagine we just have
a pair of channels

u:A® B(V) - B v:BB(V)— A

satisfying these equations:

® Werner 'All teleportation and dense coding schemes’ (2001).
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Entanglement-invertible channels: |

® |et's forget about the group theory and imagine we just have
a pair of channels

u:A® B(V) - B v:BB(V)— A

satisfying these equations:

® Werner 'All teleportation and dense coding schemes’ (2001).
¢ D. Verdon, ‘Entanglement-invertible channels’ (2022).
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A simple construction

® Now for any channel f : B — B, if
uovofouov=f

then the channels f and v o f o u are entanglement-equivalent.

® This construction was used in C.H. Bennett et al.,
‘Entanglement-assisted capacity of noisy quantum channels’
(1999).
e Qur construction:
® makes explicit the group theory behind this simple
construction.
® generalises it to channels with different source and target.
® shows that these are coherent transformations of whole
categories of covariant channels, not just of a single channel.



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion
00000 000000 000000 00000000000 00000000 00000e0

Two questions for the future

® |s it possible to find new constructions of
entanglement-equivalent channels that do not arise from
covariance in the way we have outlined here?
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Two questions for the future

® |s it possible to find new constructions of
entanglement-equivalent channels that do not arise from
covariance in the way we have outlined here?

® |s it possible to classify entanglement-equivalence classes of
channels in general?



Thanks for listening!

«Or «Fr o«
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