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Channels

• We will call a completely positive trace-preserving map
f : A→ B between finite-dimensional (f.d.) C ∗-algebras a
channel.

• This is the standard notion of a dynamical map in quantum
information theory.

• Channels B(H)→ B(K ) between algebras of operators on f.d.
Hilbert spaces are known as quantum-to-quantum channels.

• Channels B(H)→ C⊕n are called quantum-to-classical
channels, or POVMs (positive operator valued
measurements). They are determined by a family of positive
operators {Mi ∈ B(H)}i∈{1,...,n}.
• Channels C⊕n → B(H) are called classical-to-quantum

channels. They are determined by a family of states
{ρi ∈ B(H)}i∈{1,...,n}.
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Entanglement-assisted channel coding

• Alice and Bob share a communication channel N : A→ B and
a maximally entangled state Ψ : C→ B(V )⊗ B(V ).

• They want to communicate through a channel T : X → Y .

• To achieve this, Alice performs an encoding channel
E : X ⊗ B(V )→ A using her half of the entangled state, and
transmits the resulting state of A using the channel
N : A→ B.

• Bob then performs a decoding channel D : B ⊗ B(V )→ Y
using his half of the entangled state.

• We say that (E ,D,V ) is an entanglement-assisted channel
coding scheme for T from N if the resulting channel

D ◦ (N ⊗ idB(V )) ◦ (E ⊗ idB(V )) ◦ (idX ⊗Ψ) : X → Y

from Alice to Bob is equal to T .



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

Entanglement-assisted channel coding

• Alice and Bob share a communication channel N : A→ B and
a maximally entangled state Ψ : C→ B(V )⊗ B(V ).

• They want to communicate through a channel T : X → Y .

• To achieve this, Alice performs an encoding channel
E : X ⊗ B(V )→ A using her half of the entangled state, and
transmits the resulting state of A using the channel
N : A→ B.

• Bob then performs a decoding channel D : B ⊗ B(V )→ Y
using his half of the entangled state.

• We say that (E ,D,V ) is an entanglement-assisted channel
coding scheme for T from N if the resulting channel

D ◦ (N ⊗ idB(V )) ◦ (E ⊗ idB(V )) ◦ (idX ⊗Ψ) : X → Y

from Alice to Bob is equal to T .



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

Entanglement-assisted channel coding

• Alice and Bob share a communication channel N : A→ B and
a maximally entangled state Ψ : C→ B(V )⊗ B(V ).

• They want to communicate through a channel T : X → Y .

• To achieve this, Alice performs an encoding channel
E : X ⊗ B(V )→ A using her half of the entangled state, and
transmits the resulting state of A using the channel
N : A→ B.

• Bob then performs a decoding channel D : B ⊗ B(V )→ Y
using his half of the entangled state.

• We say that (E ,D,V ) is an entanglement-assisted channel
coding scheme for T from N if the resulting channel

D ◦ (N ⊗ idB(V )) ◦ (E ⊗ idB(V )) ◦ (idX ⊗Ψ) : X → Y

from Alice to Bob is equal to T .



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

Entanglement-assisted channel coding

• Alice and Bob share a communication channel N : A→ B and
a maximally entangled state Ψ : C→ B(V )⊗ B(V ).

• They want to communicate through a channel T : X → Y .

• To achieve this, Alice performs an encoding channel
E : X ⊗ B(V )→ A using her half of the entangled state, and
transmits the resulting state of A using the channel
N : A→ B.

• Bob then performs a decoding channel D : B ⊗ B(V )→ Y
using his half of the entangled state.

• We say that (E ,D,V ) is an entanglement-assisted channel
coding scheme for T from N if the resulting channel

D ◦ (N ⊗ idB(V )) ◦ (E ⊗ idB(V )) ◦ (idX ⊗Ψ) : X → Y

from Alice to Bob is equal to T .



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

Entanglement-assisted channel coding

• Alice and Bob share a communication channel N : A→ B and
a maximally entangled state Ψ : C→ B(V )⊗ B(V ).

• They want to communicate through a channel T : X → Y .

• To achieve this, Alice performs an encoding channel
E : X ⊗ B(V )→ A using her half of the entangled state, and
transmits the resulting state of A using the channel
N : A→ B.

• Bob then performs a decoding channel D : B ⊗ B(V )→ Y
using his half of the entangled state.

• We say that (E ,D,V ) is an entanglement-assisted channel
coding scheme for T from N if the resulting channel

D ◦ (N ⊗ idB(V )) ◦ (E ⊗ idB(V )) ◦ (idX ⊗Ψ) : X → Y

from Alice to Bob is equal to T .



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

Entanglement-equivalent channels

• The relation

(N1 :A1 → B1) ≥ (N2 : A2 → B2)

iff there exists an entanglement− assisted channel

coding scheme for N2 from N1

defines a partial order on channels.

• We are interested in classes of channels that are equivalent
under this partial order; that is, channels which can simulate
each other using an entangled resource. We call such channels
entanglement-equivalent.

• For a similar problem without entanglement, see M.B.
Hastings, ‘Infinitely many kinds of quantum channels’ (2008).
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Our results

• Given a channel that possesses some symmetry properties
(called ‘covariance’), we will present a construction of other
channels which are entanglement-equivalent to it.

• This construction does not solve the problem of determining
whether a pair of channels are entanglement-equivalent.

• However, it represents a first step in this direction.

• As a first application, we will show how the construction can
be used to compute the entanglement-assisted capacities of
certain quantum channels.
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Covariance of channels
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Covariance for channels

• Covariance is the standard way to define what we mean when
we say that a channel possesses some symmetry.

• Let us fix a compact symmetry group G .

• Suppose we have two f.d. C ∗-algebras A,B, respectively
carrying actions of G ; that is, continuous group
homomorphisms

πA : G → Aut(A) πB : G → Aut(B).

• We say that a channel f : A→ B is covariant for these
actions when:

πB(g) ◦ f = f ◦ πA(g) for all g ∈ G
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From groups to Hopf algebras

• Using the duality between topological spaces and algebras of
continuous functions on those spaces, we can exchange the
compact group G for a certain Hopf ∗-algebra C[G ].

• This is a commutative unital ∗-algebra equipped with a unital
∗-homomorphism

∆ : C[G ]→ C[G ]⊗ C[G ]

(the comultiplication) and two linear maps

ε : C[G ]→ C S : C[G ]→ C[G ]

which we call the counit and antipode respectively. This data
satisfies certain equations.

• It is a subalgebra of the algebra C (G ) of all continuous
complex-valued functions on the compact group G .



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

From groups to Hopf algebras

• Using the duality between topological spaces and algebras of
continuous functions on those spaces, we can exchange the
compact group G for a certain Hopf ∗-algebra C[G ].

• This is a commutative unital ∗-algebra equipped with a unital
∗-homomorphism

∆ : C[G ]→ C[G ]⊗ C[G ]

(the comultiplication) and two linear maps

ε : C[G ]→ C S : C[G ]→ C[G ]

which we call the counit and antipode respectively. This data
satisfies certain equations.

• It is a subalgebra of the algebra C (G ) of all continuous
complex-valued functions on the compact group G .



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

From groups to Hopf algebras

• Using the duality between topological spaces and algebras of
continuous functions on those spaces, we can exchange the
compact group G for a certain Hopf ∗-algebra C[G ].

• This is a commutative unital ∗-algebra equipped with a unital
∗-homomorphism

∆ : C[G ]→ C[G ]⊗ C[G ]

(the comultiplication) and two linear maps

ε : C[G ]→ C S : C[G ]→ C[G ]

which we call the counit and antipode respectively. This data
satisfies certain equations.

• It is a subalgebra of the algebra C (G ) of all continuous
complex-valued functions on the compact group G .



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

The Hopf-algebraic formulation of covariance

• Actions of the group G on a f.d. C ∗-algebra A correspond to
coactions of the Hopf ∗-algebra C[G ] on A.

• These are unital ∗-homomorphisms α : A→ A⊗ C[G ]
satisfying certain equations.

• With respect to coactions αA, αB on f.d. C ∗-algebras A,B,
covariance of a channel f : A→ B comes down to the
following equation:

(f ⊗ idC[G ]) ◦ αA = αB ◦ f
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Compact quantum group algebras

• We generalise from commutative to possibly noncommutative
Hopf ∗-algebras.

• We will call a Hopf ∗-algebra (obeying a minor technical
condition) a compact quantum group algebra. It can be
thought of as an algebra of continuous functions on a
‘compact quantum group’.

• Any commutative compact quantum group algebras is
isomorphic to C[G ] for some compact group G .

• Coactions on f.d. C ∗-algebras and covariance of channels can
be defined just as in the commutative case.

• This generalisation is necessary! We shall see why shortly.
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The category of covariant channels
• Recall that a category C is defined by the following data:

• A set of objects X ,Y , . . . .
• For every ordered pair of objects (X ,Y ), a set of morphisms

Hom(X ,Y ). (These can be thought of as ‘arrows’ between the
objects, where X is the source and Y is the target.)

• Morphisms with compatible source and target can be
composed; i.e. for f : X → Y and g : Y → Z we can define
g ◦ f : X → Z .

• This data must obey the following conditions:
• Every object X possesses an identity morphism idX : X → X .

Composing with an identity morphism does nothing.
• Composition of morphisms is associative:

(h ◦ g) ◦ f = h ◦ (g ◦ f ).

• For any compact quantum group algebra H there is a category
Chan(H) where:
• Objects are f.d. C∗-algebras equipped with an H-coaction.
• Morphisms are covariant channels.
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• Objects are f.d. C∗-algebras equipped with an H-coaction.
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Entanglement-symmetries
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Hopf-Galois objects

• Let H be a compact quantum group algebra.

• Associated to H are certain Hopf-Galois objects, which can be
thought of as ‘noncommutative torsors’ for the compact
quantum group.

• These Hopf-Galois objects are unital ∗-algebras X ,Y , . . .
equipped with unital ∗-homomorphisms α : X → X ⊗ H,
satisfying certain equations.
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From Hopf-Galois objects to functors

Recall that a functor F : C → D between categories is a map from
objects to objects and morphisms to morphisms that

• is compatible with composition: for morphisms f : X → Y
and g : Y → Z in C, we have
F (g) ◦ F (f ) = F (g ◦ f ) : F (X )→ F (Z ).

• respects identities: F (idX ) = idF (X ).

Lemma
Let H be a compact quantum group algebra and let X be a
Hopf-Galois object for H. Then we obtain

• A new compact quantum group algebra HX . (Note that even
if H was commutative HX need not be commutative; this was
why we needed to generalise to compact quantum groups.)

• A functor FX : Chan(H)→ Chan(HX ).
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Entanglement-symmetries: I

Let Ψ : C→ B(V )⊗ B(V ) be the channel initialising a maximally
entangled state.

Theorem
Let H be a compact quantum group algebra, let X be a
Hopf-Galois object for H, and let π : X → B(V ) be a
∗-representation of X on a f.d. Hilbert space V . Then for every
object A of Chan(H) we obtain a pair of channels

uA : A⊗ B(V )→ FX (A) vA : FX (A)⊗ B(V )→ A
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Entanglement-symmetries: II

Theorem (Continued)

For every H-covariant channel f : A→ B, the following equations
are obeyed:

Ψ

vB

uA

FX(f)

A

FX(A)

FX(B)

B

B(V)B(V)

= f

A

B

,

Ψ

uB

vA

f

A

B

FX(A)

FX(B)

B(V) B(V)

=

FX(A)

FX(f)

FX(B)
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Entanglement-symmetries of covariant channels

• We call these transformations arising from f.d.
∗-representations of Hopf-Galois objects
entanglement-symmetries of covariant channels.

• They are symmetries, not of a single covariant channel alone,
but of the whole category Chan(H).
• We observe in particular that for

• any H-covariant channel f : A→ B
• and any Hopf-Galois object X for H with a f.d.
∗-representation

the HX -covariant channel FX (f ) : FX (A)→ FX (B) is
entanglement-equivalent to f .
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Twisted group algebras

• Let G be any finite group.

• We will consider a class of f.d. C ∗-algebras called twisted
group algebras A(L, φ).These are defined by:
• A subgroup L < G .
• A 2-cocycle φ ∈ Z 2(L,U(1)).

• They have a basis {ug | g ∈ L}, which is orthogonal w.r.t. the
Hilbert-Schmidt inner product.
• The multiplication, unit and involution are defined as follows:

• Multiplication: ug · uh := φ(g , h)ugh.
• Unit: ue .
• Involution: u†g := ug−1 .

• We call a channel f : A(L1, φ1)→ A(L2, φ2) between these
twisted group algebras covariant if f (ug ) = λgug , for
{λg ∈ C}g∈L1 .
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Hopf-Galois objects

• Twisted group algebras, and covariant channels between them,
are part of Chan(H) for a compact quantum group algebra H.

• Hopf-Galois objects for H correspond to 2-cohomology classes
[ψ] ∈ H2(G ,U(1)).

• The new compact quantum group algebra corresponding to
any Hopf-Galois object is just H again.

• The functor F[ψ] : Chan(H)→ Chan(H) maps A(L, φ) to

A(L, ψφ).

• Covariant channels between twisted group algebras are left
unchanged as maps between the underlying vector spaces.

• However, since F[ψ] ‘twists’ the source and target algebras it
will act nontrivially on covariant channels.
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Two very concrete examples

• We fix G := Z2 × Z2.

• We consider two twisted group algebras for G :
• A(G , 1) ∼= C⊕4.
• A(G , φP) ∼= B(C2), where φP is the 2-cocycle arising from

multiplication of Pauli matrices.

• We will exhibit entanglement-symmetries relating
• Quantum-to-quantum channels A(G , φP)→ A(G , φP) with

classical-to-classical channels A(G , 1)→ A(G , 1).
• Quantum-to-classical channels A(G , φP)→ A(G , 1) with

classical-to-quantum channels A(G , 1)→ A(G , φP).
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Covariant channels A(G , 1)→ A(G , 1)

• Covariant channels A(G , 1)→ A(G , 1) are weakly symmetric
classical channels with 4 possible inputs and 4 possible
outputs.

• They are defined by a stochastic matrix
p11 p12 p13 p14
p12 p11 p14 p13
p13 p14 p11 p12
p14 p13 p12 p11


and are therefore determined by a probability distribution
(p11, p12, p13, p14).

• The classical capacity of one of these channels is

C = 2− H({p11, p12, p13, p14}).
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Covariant channels A(G , φP)→ A(G , φP)
• Recall that A(G , φP) ∼= B(C2). Recall also the definition of

the Pauli matrices

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)

• A covariant channel f : A(G , φP)→ A(G , φP) is defined by

f (I ) = I f (X ) = λXX f (Y ) = λYY f (Z ) = λZZ

where λX , λY , λZ ∈ [−1, 1] obey the equations

λX − λY + λZ ≤ 1 λX + λY − λZ ≤ 1

−λX + λY + λZ ≤ 1 λX + λY + λZ ≥ −1

• These channels scale the Bloch sphere along the X , Y and
Z -axes.



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

Covariant channels A(G , φP)→ A(G , φP)
• Recall that A(G , φP) ∼= B(C2). Recall also the definition of

the Pauli matrices

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)

• A covariant channel f : A(G , φP)→ A(G , φP) is defined by

f (I ) = I f (X ) = λXX f (Y ) = λYY f (Z ) = λZZ

where λX , λY , λZ ∈ [−1, 1] obey the equations

λX − λY + λZ ≤ 1 λX + λY − λZ ≤ 1

−λX + λY + λZ ≤ 1 λX + λY + λZ ≥ −1

• These channels scale the Bloch sphere along the X , Y and
Z -axes.



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

Covariant channels A(G , φP)→ A(G , φP)
• Recall that A(G , φP) ∼= B(C2). Recall also the definition of

the Pauli matrices

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)

• A covariant channel f : A(G , φP)→ A(G , φP) is defined by

f (I ) = I f (X ) = λXX f (Y ) = λYY f (Z ) = λZZ

where λX , λY , λZ ∈ [−1, 1] obey the equations

λX − λY + λZ ≤ 1 λX + λY − λZ ≤ 1

−λX + λY + λZ ≤ 1 λX + λY + λZ ≥ −1

• These channels scale the Bloch sphere along the X , Y and
Z -axes.



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

The entanglement-symmetry

• Covariant channels A(G , φP)→ A(G , φP) are related to
covariant channels A(G , 1)→ A(G , 1) by the Hopf-Galois
object [φP ] ∈ H2(G ,U(1)).

• This entanglement symmetry maps

(λX , λY , λZ ) 7→


p11 = 1

4(1 + λX + λY + λZ )
p12 = 1

4(1 + λX − λY − λZ )
p13 = 1

4(1− λX + λY − λZ )
p14 = 1

4(1− λX − λY + λZ )


• The entanglement-assisted classical capacity of a covariant

channel A(G , φP)→ A(G , φP) can therefore be
straightforwardly calculated by determining the entropy of the
associated probability distribution.
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Covariant channels A(G , φP)→ A(G , 1)

• Covariant channels B(C2) ∼= A(G , φP)→ A(G , 1) ∼= C⊕4 are
4-outcome POVMs on a qubit, defined by positive operators

MI :=
1

4
(I + λXX + λYY + λZZ )

MX :=
1

4
(I + λXX − λYY − λZZ )

MY =
1

4
(I − λXX + λYY − λZZ )

MZ :=
1

4
(I − λXX − λYY + λZZ )

• These POVMs are determined by ~λ := (λX , λY , λZ ) ∈ R3,
where |~λ| ≤ 1.
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Covariant channels A(G , 1)→ A(G , φP)

• Covariant channels C⊕4 ∼= A(G , 1)→ A(G , φP) ∼= B(C2) are
classical-to-quantum channels defined by four density matrices

ρI :=
1

2
(I + λXX + λYY + λZZ )

ρX :=
1

2
(I + λXX − λYY − λZZ )

ρY =
1

2
(I − λXX + λYY − λZZ )

ρZ :=
1

2
(I − λXX − λYY + λZZ )

• These classical-to-quantum channels are determined by
~λ := (λX , λY , λZ ) ∈ R3, where |~λ| ≤ 1.
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The entanglement-symmetry

• Covariant channels A(G , φP)→ A(G , 1) are related to
covariant channels A(G , 1)→ A(G , φP) by the Hopf-Galois
object [φP ] ∈ H2(G ,U(1)).

• This entanglement symmetry maps a point on the Bloch
sphere to the opposite point:

(λX , λY , λZ ) 7→ (−λX ,−λY ,−λZ )

• We see that classical-to-quantum channels and
quantum-to-classical channels can be equivalent
communication resources in the entanglement-assisted setting.



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

The entanglement-symmetry

• Covariant channels A(G , φP)→ A(G , 1) are related to
covariant channels A(G , 1)→ A(G , φP) by the Hopf-Galois
object [φP ] ∈ H2(G ,U(1)).

• This entanglement symmetry maps a point on the Bloch
sphere to the opposite point:

(λX , λY , λZ ) 7→ (−λX ,−λY ,−λZ )

• We see that classical-to-quantum channels and
quantum-to-classical channels can be equivalent
communication resources in the entanglement-assisted setting.



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

The entanglement-symmetry

• Covariant channels A(G , φP)→ A(G , 1) are related to
covariant channels A(G , 1)→ A(G , φP) by the Hopf-Galois
object [φP ] ∈ H2(G ,U(1)).

• This entanglement symmetry maps a point on the Bloch
sphere to the opposite point:

(λX , λY , λZ ) 7→ (−λX ,−λY ,−λZ )

• We see that classical-to-quantum channels and
quantum-to-classical channels can be equivalent
communication resources in the entanglement-assisted setting.



E-A channel coding Covariance of channels Entanglement-symmetries Examples Proof Conclusion

Future examples

• The construction we have seen so far extends beyond twisted
group algebras to any G-graded f.d. C ∗-algebra.

• These are not the only entanglement-symmetries coming from
finite groups — rather than G -gradings we can consider
actions of G , just as we defined for compact groups earlier.

• In that case Hopf-Galois objects correspond to subgroups
L < G which are of central type. It is an interesting problem
to compute the corresponding functors.

• Finite group actions cover natural examples of communication
channels, such as uniform noise f : B(C2)⊗n → B(C2)⊗n, i.e.
where f is covariant under the permutation action of Sn on
the n qubits.
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The tensor category Corep(H)

• For any compact quantum group algebra H we can define its
tensor category Corep(H) of f.d. unitary corepresentations.

• This should be thought of as the category of f.d. continuous
unitary representations of the associated compact quantum
group.
• It is a rigid C ∗-tensor category: in particular, it has

• A tensor product: for any corepresentations V ,W we can
define the tensor product of corepresentations V ⊗W .

• A dagger given by the Hermitian adjoint: that is, for any
intertwiner of corepresentations f : V →W there is an adjoint
intertwiner f † : W → V .
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From coactions to Frobenius algebras

• An f.d. C ∗-algebra A with an H-coaction possesses a
canonical H-invariant linear functional φ : A→ C, which we
call the separable linear functional.

• This linear functional defines an inner product
〈x |y〉 := φ(x∗y) on A turning A into a unitary
H-corepresentation; that is, an object of Corep(H).

• This object of Corep(H) is equipped with multiplication and
unit morphisms m : A⊗ A→ A and u : C→ A satisfying the
equations shown on the next slide.

• We can thereby identify f.d. C ∗-algebras carrying an
H-coaction with separable standard Frobenius algebras
(SSFAs) in Corep(H).

• See S. Neshveyev and M. Yamashita, ‘Categorically Morita
equivalent compact quantum groups’ (2018).
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• This object of Corep(H) is equipped with multiplication and
unit morphisms m : A⊗ A→ A and u : C→ A satisfying the
equations shown on the next slide.

• We can thereby identify f.d. C ∗-algebras carrying an
H-coaction with separable standard Frobenius algebras
(SSFAs) in Corep(H).

• See S. Neshveyev and M. Yamashita, ‘Categorically Morita
equivalent compact quantum groups’ (2018).
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The equations of a SSFA

= = =

= = =

f = f for all f : A→ A
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From channels to morphisms
• Covariant completely positive maps f : A→ B correspond to

morphisms f : A→ B between the corresponding SSFAs in
Corep(H) satisfying

f

B

B

B

A

A

A

=
g

g

A

A B

B

X

for some intertwiner g : A⊗ B → A⊗ B. (C. Heunen and J.
Vicary, ‘Categories for quantum theory’ (2019).)

• The CP map f : A→ B preserves the separable functional iff:

f

B

A

=

A
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A categorical approach to Hopf-Galois theory

• Hopf-Galois objects X for H correspond to functors
FX : Corep(H)→ Hilb preserving the tensor product and the
dagger. We call these fibre functors. (J. Bichon, ‘Galois
extension for a compact quantum group’ (1999).)

• There is a canonical fibre functor FH : Corep(H)→ Hilb,
taking a unitary corepresentation to its underlying Hilbert
space and an intertwiner to its underlying linear map.

• Finite-dimensional ∗-representations π : X → B(V ) of
Hopf-Galois objects correspond to unitary pseudonatural
transformations uπ : FH → FX . (D. Verdon, ‘Unitary
transformations of fibre functors’ (2022).)
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From fibre functors to equivalences

Theorem (Tannaka-Krein-Woronowicz duality)

Let C be a rigid C ∗-tensor category. From any fibre functor
F : C → Hilb we obtain:

• A compact quantum group algebra H.

• An equivalence E : C → Corep(H) preserving the tensor
product and the dagger, and making the following diagram of
functors commute up to natural isomorphism:

C Corep(H)

Hilb

FcF

E

(S. Neshveyev and L. Tuset, ‘Compact quantum groups and their
representation categories’ (2013), Thm. 2.3.2.)
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Obtaining the theorem

• We just saw that Chan(H) can be expressed as a category of
SSFAs in Corep(H).

• We also saw that Hopf-Galois objects X for H yield new
compact quantum group algebras HX and tensor-preserving
equivalences FX : Corep(H)→ Corep(HX ).

• These tensor-preserving equivalences map SSFAs to SSFAs
and channels to channels, yielding the induced equivalence
FX : Chan(H)→ Chan(HX ).

• The rest follows from the correspondence between f.d.
∗-representations of Hopf-Galois objects and unitary
pseudonatural transformations of fibre functors.
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Review

• We raised the problem of classifying channels which are
entanglement-equivalent. Such channels are equally powerful
communication resources when the transmitter and receiver
share quantum entanglement.

• We showed that if a channel is covariant with respect to
actions of some compact (quantum) group G , then
Hopf-Galois objects for G can be used to construct
entanglement-equivalent channels.

• How does this relate to prior constructions?
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An observation about our construction

• Note that the encoding and decoding channels

uA : A⊗ B(V )→ FX (A) vA : FX (A)⊗ B(V )→ A

arising from a Hopf-Galois object X obey the following
equations (because functors preserve identity morphisms):

Ψ

vA

uA

A

FX(A)

A

B(V)B(V)

=

A
Ψ

uA

A

FX(A)

B(V)B(V)

vA

FX(A)

=

FX(A)
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Entanglement-invertible channels: I
• Let’s forget about the group theory and imagine we just have

a pair of channels

u : A⊗ B(V )→ B v : B ⊗ B(V )→ A

satisfying these equations:

Ψ

v

u

A

B

A

B(V)B(V)

=

A
Ψ

u

A

B

B(V)B(V)

v

B

=

B

• Werner ‘All teleportation and dense coding schemes’ (2001).

• D. Verdon, ‘Entanglement-invertible channels’ (2022).
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A simple construction

• Now for any channel f : B → B, if

u ◦ v ◦ f ◦ u ◦ v = f

then the channels f and v ◦ f ◦ u are entanglement-equivalent.

• This construction was used in C.H. Bennett et al.,
‘Entanglement-assisted capacity of noisy quantum channels’
(1999).
• Our construction:

• makes explicit the group theory behind this simple
construction.

• generalises it to channels with different source and target.
• shows that these are coherent transformations of whole

categories of covariant channels, not just of a single channel.
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Two questions for the future

• Is it possible to find new constructions of
entanglement-equivalent channels that do not arise from
covariance in the way we have outlined here?

• Is it possible to classify entanglement-equivalence classes of
channels in general?
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Thanks for listening!
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